BackgroundIn this paper, a novel method is proposed to identify plant species by using the two- dimensional multifractal detrended fluctuation analysis (2D MF-DFA). Our method involves calculating a set of multifractal parameters that characterize the texture features of each plant leaf image. An index, I0, that characterizes the relation of the intra-species variances and inter-species variances is introduced. This index is used to select three multifractal parameters for the identification process. The procedure is applied to the Swedish leaf data set containing leaves from fifteen different tree species.ResultsThe chosen three parameters form a three-dimensional space in which the samples from the same species can be clustered together and be separated from other species. Support vector machines and kernel methods are employed to assess the identification accuracy. The resulting averaged discriminant accuracy reaches 98.4% for every two species by the 10 − fold cross validation, while the accuracy reaches 93.96% for all fifteen species.ConclusionsOur method, based on the 2D MF-DFA, provides a feasible and efficient procedure to identify plant species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.