Enteroaggregative Escherichia coli (EAggEC) are diarrheal pathogens defined by aggregative adherence to HEp-2 cells. In an effort to identify pathogenic EAggEC isolates, four groups of 5 volunteers were fed 1 of 4 different EAggEC strains, each at a dose of 10(10) cfu. Strain 042 caused diarrhea in 3 of 5 adults; 3 other EAggEC isolates (17-2, 34b, and JM221) failed to elicit diarrhea. A gene encoding enterotoxin EAST1 was found in strains 042 and 17-2 but not 34b or JM221; a 108-kDa cytotoxin was expressed in all 4 isolates. All 4 isolates showed a modest degree of gentamicin protection in HEp-2 cells. 17-2, 34b, and JM221 expressed the fimbrial antigen AAF/I; 042 did not express this fimbria as determined by immunogold electron microscopy and genetic probe hybridization.
Enteroaggregative Escherichia coli (EAggEC) has been associated with persistent pediatric diarrhea in the developing world, yet the pathogenetic mechanisms of EAggEC infection are unknown. Our previous data have suggested that aggregative adherence of some EAggEC strains to HEp-2 cells is mediated by flexible, bundle-forming fimbriae, which we have termed aggregative adherence fimbriae I (AAF/I). Genes sufficient to confer expression of AAF/I are located on the 60-MDa plasmid of EAggEC 17-2; AAF/I genes are present as two unlinked plasmid regions (regions 1 and 2), separated by 9 kb of DNA. Here we report the complete DNA sequencing of region 2 and the identification of an open reading frame which is involved in the expression of AAF/I. One open reading frame of 794 bp encodes a protein (designated AggR) with a predicted molecular size of 29.4 kDa, which shows a high degree of amino acid sequence identity to CfaR and other members of the AraC class of gene regulators. The cloned aggR gene (or, alternatively, a cloned cfaR gene) was sufficient to complement a region 1 clone to confer AAF/I expression. To further substantiate the role of aggR in the regulation of AAF/I, we constructed a 289-bp in-frame aggR deletion and replaced the native gene in 17-2 by allelic exchange, using the temperature-sensitive vector pIB307. The resulting aggR deletions were negative for AAF/I expression, but expression was restored when the aggR gene (cloned into pBluescript II SK) was reintroduced into the aggR mutant. RNA slot blot experiments using a probe for the putative AAF/I pilin subunit (aggA) revealed that aggR operates as a transcriptional activator of aggA expression. aggA::phoA fusions were constructed in 17-2 and in 17-2 delta aggR. AggR was found to promote expression of the aggA gene under a variety of conditions of temperature, osmolarity, oxygen tension, and medium. At acid pH, aggA expression was maximal and was regulated by both AggR-dependent and AggR-independent mechanisms.
Chloroplast development and chlorophyll(Chl)metabolism in unripe tomato contribute to the growth and quality of the fruit, however these mechanisms are poorly understood. In this study, we initially investigated seven homeobox-containing transcription factors (TFs) with specific ripening-associated expression patterns using virus-induced gene silencing (VIGS) technology and found that inhibiting the expression of one of these TFs, BEL1-LIKE HOMEODOMAIN11 (SlBEL11), significantly increased Chl levels in unripe tomato fruit. This enhanced Chl accumulation was further validated by generating stable RNA interference (RNAi) transgenic lines. RNA sequencing (RNA-seq) of RNAi-SlBEL11 fruit at the mature green (MG) stage showed that 48 genes involved in Chl biosynthesis, photosynthesis and chloroplast development were significantly upregulated compared with the wild type (WT) fruit. Genomic global scanning for Homeobox TF binding sites combined with RNA-seq differential gene expression analysis showed that 22 of these 48 genes were potential target genes of SlBEL11 protein. These genes included Chl biosynthesis-related genes encoding for protochlorophyllide reductase (POR), magnesium chelatase H subunit (CHLH) and chlorophyllide a oxygenase (CAO), and chloroplast development-related genes encoding for chlorophyll a/b binding protein (CAB), homeobox protein knotted 2 (TKN2) and ARABIDOPSIS PSEUDO RESPONSE REGULATOR 2-LIKE (APRR2-like). Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation quantitative polymerase chain reaction (PCR) (ChIP-qPCR) assays were employed to verify that SlBEL11 protein could bind to the promoters for TKN2, CAB and POR. Taken together, our findings demonstrated that SlBEL11 plays an important role in chloroplast development and Chl synthesis in tomato fruit.
Adherence to HEp-2 cells by many enteroaggregative Escherichia coli (EAggEC) strains is associated with the expression of flexible, bundle-forming fimbriae 2 to 3 nm in diameter, designated aggregative adherence fimbriae I (AAF/I). We have previously reported the molecular cloning and TnphoA mutagenesis of AAF/I genes from the large plasmid of prototype EAggEC strain 17-2 (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.