Ladder phenylenes (LPs) composed
of alternating fused benzene and
cyclobutadiene rings have been synthesized in solution with a maximum
length no longer than five units. Longer polymeric LPs have not been
obtained so far because of their poor stability and insolubility.
Here, we report the synthesis of linear LP chains on the Au(111) surface
via dehalogenative [2+2] cycloaddition, in which the steric hindrance
of the methyl groups in the 1,2,4,5-tetrabromo-3,6-dimethylbenzene
precursor improves the chemoselectivity as well as the orientation
orderliness. By combining scanning tunneling microscopy and noncontact
atomic force microscopy, we determined the atomic structure and the
electronic properties of the LP chains on the metallic substrate and
NaCl/Au(111). The tunneling spectroscopy measurements revealed the
charged state of chains on the NaCl layer, and this finding is supported
by density functional theory calculations, which predict an indirect
bandgap and antiferromagnetism in the polymeric LP chains.
On-surface Ullmann coupling reaction of aryl chlorides has been achieved on Cu(111), Ag(111), and Au(111), and the mechanism has been investigated on the single molecule level using scanning tunneling microscopy and density functional theory. The different reactivity of the aryl halides was utilized to design a stepwise on-surface synthesis, which affords a zigzag template and then converts to 2D porous networks.
Objective
Lung cancer is the first leading cause of cancer-related deaths both worldwide and in China and threatens human health and quality of life. New drugs and therapeutic methods are urgently needed. Our study evaluated the roles of dihydroartemisinin (DHA) in lung cancer and further explored its underlying mechanisms.
Methods
CCK-8, colony formation and trypan blue exclusion assays were used to detect the cell viability, colony formation ability and cell death. qRT-PCR and Western blotting assays were applied to analyze the expressions of key molecules.
Results
DHA inhibited the proliferation and colony formation abilities and enhanced the cell death and induced ferroptosis of lung NCI-H23 and XWLC-05 cancer cells. DHA reduced PRIM2 expression and silencing PRIM2 mimicked the inhibitory roles on proliferation and colony formation and promotive roles on cell death and ferroptosis of DHA in lung NCI-H23 and XWLC-05 cancer cells. We further found that DHA treatment and loss of PRIM2 reduced the GSH level and increased the cellular lipid ROS and mitochondrial MDA levels, and further downregulated the expressions of SLC7A11 and β-catenin in lung cancer cells, respectively. Exogenetic overexpression of PRIM2 recovered the inhibitory effects of DHA on proliferation and colony formation in lung NCI-H23 cancer cells, meanwhile loss of PRIM2 sensitizes NCI-H23 cells to DHA therapy. In vivo experiment further showed that DHA treatment significantly suppressed the tumor growth and downregulated PRIM2 and SLC7A11.
Conclusion
Our study suggested that DHA inhibited the proliferation, colony formation and enhanced cell death and induced ferroptosis of lung cancer cells by inactivating PRIM2/SLC7A11 axis. Loss of PRIM2 induced ferroptosis might developed to be a novel therapeutic method in lung cancer therapy.
The efficiency of Ullmann reaction of aryl chlorides on an Au(111) surface has been substantially increased by using dosed Cu as a catalyst. The different reactivity of aryl bromides and aryl chlorides has been exploited to design a programmed, on-surface synthesis to form 2D covalent organic frameworks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.