Halotolerant yeast, Pichia farinosa, is a valuable yeast strain in fermentation industry because it produces high yield of glycerol and xylitol, and can tolerate both contamination and high-density growth during fermentation. However, the lack of genetic manipulation tools makes it less popular as a gene engineering strain. Expression systems commonly used in other yeast systems, such as Saccharomyces cerevisiae and Pichia pastoris cannot be used in P. farinosa because it translates universal Leu codon CUG as Ser. Here we reported a modified expression vector and a transformation system with enhanced efficiency in P. farinosa. The results showed that cells of OD(600 )0.8-1.0 with DTT treatment can obtain high transformation efficiency. The optimized electroporation condition was 900 V, 25 microF, and 200 Omega. The DNA concentration did not influence the transformation. Our system provides the potential not only for applying P. farinosa as an industrial strain of gene engineering, but also for studying gene function in its native host.
The consolidated bioprocessing (CBP) of lignocellulose by the synthetic microbial consortium of Trichoderma reesei and Saccharomyces cerevisiae is a promising way of biomanufacturing d‐glucaric acid. However, the hindrance factor to its industrial application is the low efficiency. Therefore, we engineered T. reesei and S. cerevisiae to improve the CBP for d‐glucaric acid production. T. reesei was engineered to produce more cellulase and release more fermentable sugars from lignocellulose, that is, pushing more sugars to S. cerevisiae. S. cerevisiae was engineered to metabolize cellobiose and siphon more sugars into d‐glucaric acid biosynthetic pathway, that is, pulling more sugars to S. cerevisiae. This is the strategy of distributive and collaborative push‐and‐pull we developed and proposed in this work, which was proven successful in improving efficiencies of the CBPs of steam‐exploded corn stover (SECS) for d‐glucaric acid production and distiller's grains for single cell protein (SCP) production. The titer, yield and productivity of d‐glucaric acid produced from 50 g/L SECS by the microbial consortium of T. reesei C10 and S. cerevisiae LGA‐1C3S2 were 6.42 g/L, 0.128 g/g SECS, and 0.917 g/L/d, respectively. The titer, yield, and productivity of SCP produced from 80 g/L distiller's grains were 50.5 g/L, 0.631 g/g distiller's grains, and 8.417 g/L/d, respectively. These were much higher than the initial microbial consortia of T. reesei Rut‐C30 and S. cerevisiae LGA‐1 or INVSc1. The results confirmed the applicability and generalizability of distributive and collaborative push‐and‐pull, which has profound meaning for science and engineering.
In this study, the surface subsidence caused by underground mining is monitored by the technique of SBAS-InSAR. The second west mining area of Longshou mine, Jinchang Jinchuan Cu-Ni sulfide mine, Gansu province, is selected as the research area for the experiment. The 29 scene elevation rail Sentinel-1A image data from 2019.03-2020.3 are analyzed for the sequence analysis of the SBAS-InSAR. The vertical subsidence rate and cumulative subsidence results of the surface sequence of the mining area are obtained. According to the study, the minimum error of cumulative sedimentation between SBAS-InSAR and D-InSAR is 0.1mm, the maximum error is 21.37mm, and the median error is ±6.65mm. The minimum error of cumulative settlement between SBAS-InSAR and levelling is 0.66mm, the maximum is 23.74mm, and the median error is ±10.79mm. The results show that the application of the SBAS-InSAR technique in the monitoring of surface subsidence in the mining area is reliable, which provides an important basis for the subsequent safe mining in the mining area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.