Immune infiltration of tumors has been increasingly accepted as a prognostic factor in colon cancer. Here, we aim to develop a novel immune signature, based on estimated immune landscape from tumor transcriptomes, to predict the overall survival of patients with colon cancer. The compositions of 22 immune cell subtypes from threeCIBERSORT, colon cancer, immune infiltration, prognosis, tumor microenvironment
Background: Conventional white-light imaging endoscopy (C-WLI) had a significant number of misdiagnosis in early gastric cancer (EGC), and magnifying endoscopy (ME) combined with different optical imaging was more accurate in the diagnosis of EGC. This study aimed to evaluate the accuracy of ME and compare the accuracy of ME with different optical imaging in detecting EGC. Methods: A comprehensive literature search was conducted to identify all relevant studies. Pair-wise meta-analysis was conducted to evaluate the accuracy of ME, and Bayesian network meta-analysis was performed to combine direct and indirect evidence and estimate the relative effects. Results: Eight prospective studies were identified with a total of 5948 patients and 3 optical imaging in ME (ME with WLI (M-WLI), ME with narrow-band imaging (M-NBI), and ME with blue laser imaging (M-BLI)). Pair-wise meta-analysis showed a higher accuracy of ME than C-WLI (OR: 2.97, 95% CI: 1.68∼5.25). In network meta-analysis, both M-NBI and M-BLI were more accurate than M-WLI (OR: 2.56, 95% CI: 2.13∼3.13; OR: 3.13, 95% CI: 1.85∼5.71). There was no significant difference between M-NBI and M-BLI. Conclusion: ME was effective in improving the detecting rate of EGC, especially with NBI or BLI.
Objective. Evidence increasingly shows that circular RNAs (circRNAs) are closely associated with tumorigenesis and cancer progression. However, the roles of circRNAs and the underlying mechanism behind these circRNAs in gastric cancer (GC) remain to be elucidated. This study is aimed at conferring a better understanding of GC pathogenesis with a specific focus on circRNA-based ceRNA action. Methods. circRNA expression profiles were downloaded from two Gene Expression Omnibus (GEO) microarray datasets, GSE152309 and GSE121445. Expression profiles of miRNAs and mRNAs were collected from The Cancer Genome Atlas (TCGA) database. The ceRNA network was constructed based on circRNA-miRNA pairs and miRNA-mRNA pairs. Functional and pathway enrichment analyses were performed to evaluate functional pathways of differentially expressed mRNAs (DEmRNAs). The PPI network was constructed by mapping DEmRNAs into the STRING database to identify hub genes, and then the DEcircRNA-DEmiRNA-hub gene subnetwork was constructed. The expression levels of candidate differentially expressed circRNAs (DEcircRNAs) in cancerous and matched noncancerous gastric tissues surgically resected from 52 GC patients were determined by the RT-qPCR analysis. Results. Differential expression analysis with Venn diagram analysis showed 11 overlapped DEcircRNAs (7 upregulated circRNAs and 4 downregulated ones) between cancerous tissues and noncancerous gastric tissues. The DEcircRNA-DEmiRNA-DEmRNA network was constructed, consisting of 2 DEcircRNAs, 7 DEmiRNAs, and 104 DEmRNAs. GO and KEGG pathway analyses revealed that 104 DEmRNAs might be associated with GC development and progression. The PPI network was constructed, yielding 16 hub genes, TFDP1, KRAS, LMNB1, MET, MYBL2, CDC25A, E2F5, HMGA1, HMGA2, CBFB, CBX3, CDC7, IGF2BP3, KIF11, PDGFB, and SMC1A, which were all upregulated in GC tissues compared with adjacent tumor-free gastric tissues. Based on the above hub genes in GC, the DEcircRNA-DEmiRNA-hub gene subnetwork was reconstructed based on hsa_circ_0000384 and hsa_circ_0000043, including 22 pairs of the upcircRNA-downmiRNA-upmRNA network. The expression levels of hsa_circ_0000384 and hsa_circ_0000043 were remarkably higher in GC tissues than those in matched adjacent tumor-free gastric tissues ( p < 0.001 ), concurring with the bioinformatics results. Conclusion. Our study offers a better understanding of circRNA-related ceRNA regulatory mechanism in the pathogenesis of GC, highlighting two ceRNA networks based on hsa_circ_0000384 and hsa_circ_0000043.
Objective. Evidence proves that integrins affect almost every step of hepatocellular carcinoma (HCC) progression. The current study aimed at constructing an integrin-based signature for prognostic prediction of HCC. Methods. TCGA-LIHC and ICGC-LIRI-JP cohorts were retrospectively analyzed. Integrin genes were analyzed via univariate Cox regression, followed by generation of a prognostic signature with LASSO approach. Independent factors were input into the nomogram. WGCNA was adopted to select this signature-specific genes. Gene Ontology (GO) enrichment together with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted to explore the function of the dysregulated genes. The abundance of tumor microenvironment components was estimated with diverse popular computational methods. The relative importance of genes from this signature was estimated through random-forest method. Results. Eight integrin genes (ADAM15, CDC42, DAB2, ITGB1BP1, ITGB5, KIF14, LIMS2, and SELP) were adopted to define an integrin-based signature. Each patient was assigned the riskScore. High-riskScore subpopulation exhibited worse overall survival, with satisfying prediction efficacy. Also, the integrin-based signature was independent of routine clinicopathological parameters. The nomogram (comprising integrin-based signature, and stage) accurately inferred prognostic outcome, with the excellent net benefit. Genes with the strongest positive interaction to low-riskScore were primarily linked to biosynthetic, metabolic, and catabolic processes and immune pathways; those with the strongest association with high-riskScore were principally associated with diverse tumorigenic signaling. The integrin-based signature was strongly linked with tumor microenvironment components. Among the genes from this signature, LIMS2 possessed the highest importance, and its expression was proven through immunohistochemical staining. Conclusion. Altogether, our study defined a quantitative integrin-based signature that reliably assessed HCC prognosis and tumor microenvironment features, which possessed the potential as a tool for prognostic prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.