BackgroundThe consumption of dairy products may influence the risk of type 2 diabetes mellitus (T2DM), but inconsistent findings have been reported. Moreover, large variation in the types of dairy intake has not yet been fully explored.Methods and ResultsWe conducted a systematic review and meta-analysis to clarify the dose–response association of dairy products intake and T2DM risk. We searched PubMed, EMBASE and Scopus for studies of dairy products intake and T2DM risk published up to the end of October 2012. Random-effects models were used to estimate summary relative risk (RR) statistics. Dose-response relations were evaluated using data from different dairy products in each study. We included 14 articles of cohort studies that reported RR estimates and 95% confidence intervals (95% CIs) of T2DM with dairy products intake. We found an inverse linear association of consumption of total dairy products (13 studies), low-fat dairy products (8 studies), cheese (7 studies) and yogurt (7 studies) and risk of T2DM. The pooled RRs were 0.94 (95% CI 0.91–0.97) and 0.88 (0.84–0.93) for 200 g/day total and low-fat dairy consumption, respectively. The pooled RRs were 0.80 (0.69–0.93) and 0.91 (0.82–1.00) for 30 g/d cheese and 50 g/d yogurt consumption, respectively. We also found a nonlinear association of total and low-fat dairy intake and T2DM risk, and the inverse association appeared to be strongest within 200 g/d intake.ConclusionA modest increase in daily intake of dairy products such as low fat dairy, cheese and yogurt may contribute to the prevention of T2DM, which needs confirmation in randomized controlled trials.
Aim: To investigate whether curcumin (Cur) suppressed lipopolysaccharide (LPS)-induced inflammation in vascular smooth muscle cells (VSMCs) of rats, and to determine its molecular mechanisms. Methods: Primary rat VSMCs were treated with LPS (1 μg/L) and Cur (5, 10, or 30 μmol/L) for 24 h. The levels of MCP-1, TNF-α, and iNOS were measured using ELISA and real-time RT-PCR. NO level was analyzed with the Griess reaction. Western-blotting was used to detect the activation of TLR4, MAPKs, IκBα, NF-κB p65, and the p47 phox subunit of NADPH oxidase in the cells. Results: Treatment of VSMCs with LPS dramatically increased expression of inflammatory cytokines MCP-1 and TNF-α, expression of TLR4 and iNOS, and NO production. LPS also significantly increased phosphorylation of IκBα, nuclear translocation of NF-κB (p65) and phosphorylation of MAPKs in VSMCs. Furthermore, LPS significantly increased production of intracellular ROS, and decreased expression of p47 phox subunit of NADPH oxidase. Pretreatment with Cur concentration-dependently attenuated all the aberrant changes in LPS-treated VSMCs. The LPS-induced overexpression of MCP-1 and TNF-α, and NO production were attenuated by pretreatment with the ERK inhibitor PD98059, the p38 MAPK inhibitor SB203580, the NF-κB inhibitor PDTC or anti-TLR4 antibody, but not with the JNK inhibitor SP600125. Conclusion: Cur suppresses LPS-induced overexpression of inflammatory mediators in VSMCs in vitro via inhibiting the TLR4-MAPK/ NF-κB pathways, partly due to block of NADPH-mediated intracellular ROS production.
Heart failure (HF) is the end-stage of cardiovascular diseases, which is associated with a high mortality rate and high readmission rate. Household early diagnosis and real-time prognosis of HF at bedside are of significant importance. Here, we developed a highly sensitive and quantitative household prognosis platform (termed as UC-LFS platform), integrating a smartphone-based reader with multiplexed upconversion fluorescent lateral flow strip (LFS). Dual-color core-shell upconversion nanoparticles (UCNPs) were synthesized as probes for simultaneously quantifying two target antigens associated with HF, i.e., brain natriuretic peptide (BNP) and suppression of tumorigenicity 2 (ST2). With the fluorescent LFS, we achieved the specific detection of BNP and ST2 antigens in spiked samples with detection limits of 5 pg/mL and 1 ng/mL, respectively, both of which are of one order lower than their clinical cutoff. Subsequently, a smartphone-based portable reader and an analysis app were developed, which could rapidly quantify the result and share prognosis results with doctors. To confirm the usage of UC-LFS platform for clinical samples, we detected 38 clinical serum samples using the platform and successfully detected the minimal concentration of 29.92 ng/mL for ST2 and 17.46 pg/mL for BNP in these clinical samples. Comparing the detection results from FDA approved clinical methods, we obtained a good linear correlation, indicating the practical reliability and stability of our developed UC-LFS platform. Therefore, the developed UC-LFS platform is demonstrated to be highly sensitive and specific for sample-to-answer prognosis of HF, which holds great potential for risk assessment and health monitoring of post-treatment patients at home.
Objective To explore whether trimetazidine could improve symptoms, cardiac functions and clinical outcomes in patients with heart failure (HF). Methods A systematic literature search was conducted to identify randomised controlled trials (RCT) of trimetazidine for HF between 1966 and May 2010 in Pubmed, the Cochrane Central Registry of Clinical Trials and EMBASE. Reports of trials were sought that compared trimetazidine with placebo control for chronic HF in adults, with outcomes including all-cause mortality, hospitalisation, cardiovascular events, changes in cardiac function parameters and exercise capacity. Results 17 trials with data for 955 patients were identified by the literature search. Trimetazidine therapy was associated with a significant improvement in left ventricular ejection fraction in patients with both ischaemic (weighted mean difference (WMD) with placebo 7.37%; 95% CI 6.05 to 8.70; p<0.01) and non-ischaemic HF (WMD 8.72%; 95% CI 5.51 to 11.92; p<0.01). With trimetazidine therapy, left ventricular end-systolic volume was significantly reduced (WMD 10.37 ml; 95% CI 15.46 to 5.29; p<0.01) and New York Heart Association classification was improved (WMD 0.41; 95% CI 0.51 to 0.31; p<0.01) as was exercise duration (WMD, 30.26 s; 95% CI 8.77 to 51.75; p<0.01). More importantly, trimetazidine had a significant protective effect for all-cause mortality (RR 0.29; 95% CI 0.17 to 0.49; p<0.00001) and cardiovascular events and hospitalisation (RR 0.42; 95% CI 0.30 to 0.58; p<0.00001). Conclusion Trimetazidine might be an effective strategy for treating HF. More studies, especially larger multicentre RCT, are warranted to clarify the effect of trimetazidine on HF.With more than 5 million prevalent cases and nearly 1 million hospital discharges yearly, heart failure (HF) represents a rapidly growing therapeutic challenge for healthcare providers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.