Nitrate (NO3−) in wastewater is a rising global threat to ecological and health safety. A sufficient carbon source, as the electron donor, is essential in the conventional biological denitrification process. It is not appropriate to add extra carbon sources into specific water bodies in terms of material cost and secondary pollution. Thus, innovative NO3− removal technologies that are independent of carbon sources, are urgently needed. This study constructed sediment microbial fuel cells (SMFCs) for aerobic denitrification in low-organic matter wastewater and explored the key factors affecting denitrification efficiencies. The SMFC treatments removed 72–91% NO3− through two main denitrifying stages which were driven by carbon sources (COD) and generated electrons, respectively. After COD was fully consumed, denitrification efficiencies were enhanced in SMFC treatments by 24–47% using the generated electrons within 3 days. In this stage, the NO3− removal efficiencies were positively correlated with external current intensities (p < 0.05). The improved denitrification efficiencies were attributed to two enriched phyla in the SMFC cathode. The dominant genera also demonstrated the heterotrophic denitrifying capacity of the SMFC biocathode. Furthermore, electrical characteristics could be used to monitor or regulate the denitrification process in the SMFC system. In conclusion, this study presents an innovative treatment strategy that is economical and eco-friendly compared with conventional physicochemical methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.