Exosomes are generated within the multivesicular endosomes (MVEs) as intraluminal vesicles (ILVs) and secreted during the fusion of MVEs with the cell membrane. The mechanisms of exosome biogenesis remain poorly explored. Here we identify that RAB31 marks and controls an ESCRT-independent exosome pathway. Active RAB31, phosphorylated by epidermal growth factor receptor (EGFR), engages flotillin proteins in lipid raft microdomains to drive EGFR entry into MVEs to form ILVs, which is independent of the ESCRT (endosomal sorting complex required for transport) machinery. Active RAB31 interacts with the SPFH domain and drives ILV formation via the Flotillin domain of flotillin proteins. Meanwhile, RAB31 recruits GTPase-activating protein TBC1D2B to inactivate RAB7, thereby preventing the fusion of MVEs with lysosomes and enabling the secretion of ILVs as exosomes. These findings establish that RAB31 has dual functions in the biogenesis of exosomes: driving ILVs formation and suppressing MVEs degradation, providing an exquisite framework to better understand exosome biogenesis.
Autographa californica nucleopolyhedrovirus (AcMNPV) orf93 (ac93) is a highly conserved uncharacterized gene that is found in all of the sequenced baculovirus genomes except for Culex nigripalpus NPV. In this report, using bioinformatics analyses, ac93 and odv-e25 (ac94) were identified as baculovirus core genes and thus p33-ac93-odv-e25 represent a cluster of core genes. To investigate the role of ac93 in the baculovirus life cycle, an ac93 knockout AcMNPV bacmid was constructed via homologous recombination in Escherichia coli. Fluorescence and light microscopy showed that the AcMNPV ac93 knockout did not spread by infection, and titration assays confirmed a defect in budded virus (BV) production. However, deletion of ac93 did not affect viral DNA replication. Electron microscopy indicated that ac93 was required for the egress of nucleocapsids from the nucleus and the formation of intranuclear microvesicles, which are precursor structures of occlusionderived virus (ODV) envelopes. Immunofluorescence analyses showed that Ac93 was concentrated toward the cytoplasmic membrane in the cytoplasm and in the nuclear ring zone in the nucleus. Western blot analyses showed that Ac93 was associated with both nucleocapsid and envelope fractions of BV, but only the nucleocapsid fraction of ODV. Our results suggest that ac93, although not previously recognized as a core gene, is one that plays an essential role in the formation of the ODV envelope and the egress of nucleocapsids from the nucleus.
STING, an endoplasmic reticulum (ER) transmembrane protein, mediates innate immune activation upon cGAMP stimulation and is degraded through autophagy. Here, we report that activated STING could be transferred between cells to promote antitumor immunity, a process triggered by RAB22A-mediated non-canonical autophagy. Mechanistically, RAB22A engages PI4K2A to generate PI4P that recruits the Atg12–Atg5–Atg16L1 complex, inducing the formation of ER-derived RAB22A-mediated non-canonical autophagosome, in which STING activated by agonists or chemoradiotherapy is packaged. This RAB22A-induced autophagosome fuses with RAB22A-positive early endosome, generating a new organelle that we name Rafeesome (RAB22A-mediated non-canonical autophagosome fused with early endosome). Meanwhile, RAB22A inactivates RAB7 to suppress the fusion of Rafeesome with lysosome, thereby enabling the secretion of the inner vesicle of the autophagosome bearing activated STING as a new type of extracellular vesicle that we define as R-EV (RAB22A-induced extracellular vesicle). Activated STING-containing R-EVs induce IFNβ release from recipient cells to the tumor microenvironment, promoting antitumor immunity. Consistently, RAB22A enhances the antitumor effect of the STING agonist diABZI in mice, and a high RAB22A level predicts good survival in nasopharyngeal cancer patients treated with chemoradiotherapy. Our findings reveal that Rafeesome regulates the intercellular transfer of activated STING to trigger and spread antitumor immunity, and that the inner vesicle of non-canonical autophagosome originated from ER is secreted as R-EV, providing a new perspective for understanding the intercellular communication of organelle membrane proteins.
Our previous study showed that the Autographa californica nucleopolyhedrovirus (AcMNPV) ac76 gene is essential for both budded virion (BV) and occlusion-derived virion (ODV) development. More importantly, deletion of ac76 affects intranuclear microvesicle formation. However, the exact role by which ac76 affects virion morphogenesis remains unknown. In this report, we characterized the expression, distribution, and topology of Ac76 to further understand the functional role of Ac76 in virion morphogenesis. Ac76 contains an ␣-helical transmembrane domain, and phase separation showed that it was an integral membrane protein. In AcMNPV-infected cells, Ac76 was detected as a stable dimer that was resistant to SDS and thermal denaturation, and only a trace amount of monomer was detected. A coimmunoprecipitation assay demonstrated the dimerization of Ac76 by high-affinity self-association. Western blot analyses of purified virions and their nucleocapsid and envelope fractions showed that Ac76 was associated with the envelope fractions of both BVs and ODVs. Immunoelectron microscopy revealed that Ac76 was localized to the plasma membrane, endoplasmic reticulum (ER), nuclear membrane, intranuclear microvesicles, and ODV envelope. Amino acids 15 to 48 of Ac76 were identified as an atypical inner nuclear membrane-sorting motif because it was sufficient to target fusion proteins to the ER and nuclear membrane in the absence of viral infection and to the intranuclear microvesicles and ODV envelope during infection. Topology analysis of Ac76 by selective permeabilization showed that Ac76 was a type II integral membrane protein with an N terminus exposed to the cytosol and a C terminus hidden in the ER lumen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.