Moisture-enabled electricity generation (MEG) is highly promising in nextgeneration energy conversion. However, the practical applications of existing MEG devices are limited due to their low current and voltage outputs, strong dependence on high moisture, and inflexible nature. Herein, an efficient MEG integrated with flexible, all-weather, and scalable fabrication characteristics based on the rational combination of carbonized polymer dots (CPDs) and liquid metal (LM) active electrodes is developed for the first time. Remarkably, the fabricated MEG device can produce a stable voltage output of 800 mV and a record high current density of 1640 µA cm −2 . Even at a low air humidity of 15%, the MEG device can provide a high voltage output of 0.65 V and a considerable current density of 12 µA cm −2 . The prompted diffusion of hydrogen ions in CPDs and the additional metal ions ionized from the LM electrode contribute synergistically to the high electricity generation. Additionally, the device can be easily integrated on various flexible substrates and generate an ultrahigh voltage of 210 V to power commercial electronics, showing great potential in large-scale fabrication and application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.