This paper investigates the problem of stabilization of sampled-data neural-network-based systems with state quantization. Different with previous works, the communication limitation of state quantization is considered for the first time. More specifically, it is assumed that the sampled state measurements from sensor to the controller are quantized via a quantizer. To reduce conservativeness, a novel piecewise Lyapunov-Krasovskii functional (LKF) is constructed by introducing a line-integral type Lyapunov function and some useful terms that take full advantage of the available information about the actual sampling pattern. Based on the new LKF, much less conservative stabilization conditions are derived to obtain the maximal sampling period and the minimal guaranteed cost control performance. The desired quantized sampled-data three-layer fully connected feedforward neural-network-based controllers are designed by a linear matrix inequality approach. A search algorithm is given to find the optimal values of tuning parameters. The effectiveness and advantage of proposed method are demonstrated by the numerical simulation of an inverted pendulum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.