Increasing grain production is essential to those areas where food is scarce. Increasing grain production by controlling crop diseases and pests in time should be effective. To construct video detection system for plant diseases and pests, and to build a real-time crop diseases and pests video detection system in the future, a deep learning-based video detection architecture with a custom backbone was proposed for detecting plant diseases and pests in videos. We first transformed the video into still frame, then sent the frame to the still-image detector for detection, and finally synthesized the frames into video. In the still-image detector, we used faster-RCNN as the framework. We used image-training models to detect relatively blurry videos. Additionally, a set of video-based evaluation metrics based on a machine learning classifier was proposed, which reflected the quality of video detection effectively in the experiments. Experiments showed that our system with the custom backbone was more suitable for detection of the untrained rice videos than VGG16, ResNet-50, ResNet-101 backbone system and YOLOv3 with our experimental environment.
In agriculture, pest always causes the major damage in fields and results in significant crop yield losses. Currently, manual pest classification and counting are very time-consuming and many subjective factors can affect the population counting accuracy. In addition, the existing pest localization and recognition methods based on Convolutional Neural Network (CNN) are not satisfactory for practical pest prevention in fields because of pests' different scales and attitudes. In order to address these problems, an effective data augmentation strategy for CNN-based method is proposed in this paper. In training phase, we adopt data augmentation through rotating images by various degrees followed by cropping into different grids. In this way, we could obtain a large number of extra multi-scale examples that could be adopted to train a multi-scale pest detection model. In terms of test phase, we utilize the test time augmentation (TTA) strategy that separately inferences input images with various resolutions using the trained multi-scale model. Finally, we fuse these detection results from different image scales by non-maximum suppression (NMS) for the final result. Experimental results on wheat sawfly, wheat aphid, wheat mite and rice planthopper in our domain specific dataset, show that our proposed data augmentation strategy achieves the pest detection performance of 81.4% mean Average Precision (mAP), which improves 11.63%, 7.93% ,4.73% compared to three stateof-the-art approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.