Endometrial receptivity plays a vital role in successful embryo implantation in pigs. MicroRNAs (miRNAs), known as the regulator of gene expression, were implicated in the regulation of embryo implantation. However, the role of miRNAs in the endometrial receptivity during the pre-implantation period remains elusive. In this study, we reported that the expression level of ssc-miR-21-5p in porcine endometrium tissues was significantly increased from day 9 to day 12 of pregnancy. Knockdown of ssc-miR-21-5p inhibited proliferation and migration of endometrial epithelial cells (EECs), while induced their apoptosis. We verified that programmed cell death 4 (PDCD4) was a target gene of ssc-miR-21-5p. Inhibition of PDCD4 rescued the effect of ssc-miR-21-5p repression on EECs. Our results also revealed that knockdown of ssc-miR-21-5p impeded the phosphorylation of AKT by targeting PDCD4, which further up-regulated the expression of Bax and down-regulated the levels of Bcl2 and Mmp9. Furthermore, loss of function of mmu-miR-21-5p in vivo resulted in a decreased number of implanted mouse embryos. Taken together, knockdown of ssc-miR-21-5p hampers endometrial receptivity through modulating the PDCD4/AKT pathway.
Zearalenone (ZEA) has been proved to be toxic, particularly to the reproductive system of gilts. The effect of ZEA on gilts during embryo implantation window period is of particular interests. Here, we observed window stage dysontogenesis of gilts treated with ZEA. In endometrial tissues and cells, autophagosomes increased significantly and mitochondria were damaged with increasing ZEA concentration. Addition of autophagy inhibitor confirmed that ZEA blocks the autophagic flow in the fusion of autophagosomes and lysosomes. In conclusion, ZEA exposure during embryo implantation results in endometrium inflammation by activating autophagy while blocking autophagy flow at the same time, leading to the significant accumulation of autophagosomes. The aforementioned effects of ZEA induce the apoptosis of primary endometrial cells through the caspase3 pathway, which would break the uterus environment balance and finally lead to embryo implantation failure and dysontogenesis in gilts.
Heat stress (HS) poses a significant threat to production and survival in the global swine industry. However, the molecular regulatory effects of heat stress on maternal endometrial cells are poorly understood in pigs during early embryo implantation. In this study, we systematically examined morphological changes in the endometrium and the corresponding regulation mechanism in response to HS by combining scanning electron microscopy (SEM), hematoxylin/eosin (H&E) staining, western blot, and RNA-seq analyses. Our results showed that HS led to porcine endometrium damage and endometrial thinness during embryo implantation. The expression levels of cell adhesion-related proteins, including N-cadherin and E-cadherin, in the uterus were significantly lower in the heat stress group (39 ± 1 °C, n = 3) than in the control group (28 ± 1 °C, n = 3). A total of 338 up-regulated genes and 378 down-regulated genes were identified in porcine endometrium under HS. The down-regulated genes were found to be mainly enriched in the pathways related to the microtubule complex, immune system process, and metalloendopeptidase activity, whereas the up-regulated genes were mainly involved in calcium ion binding, the extracellular region, and molecular function regulation. S100A9 was found to be one of the most significant differentially expressed genes (DEGs) in the endometrium under HS, and this gene could promote proliferation of endometrial cells and inhibit their apoptosis. Meanwhile, HS caused endometrial epithelial cell (EEC) damage and inhibited its proliferation. Overall, our results demonstrated that HS induced uterine morphological change and tissue damage by regulating the expression of genes associated with calcium ions and amino acid transport. These findings may provide novel molecular insights into endometrial damage under HS during embryo implantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.