Peptidyl-RNA conjugates have various applications in studying the ribosome and enzymes participating in tRNA-dependent pathways such as Fem transferases in peptidoglycan synthesis. Herein a convergent synthesis of peptidyl-RNAs based on Huisgen-Sharpless cycloaddition for the final ligation step is developed. Azides and alkynes are introduced into tRNA and UDP-MurNAc-pentapeptide, respectively. Synthesis of 2'-azido RNA helix starts from 2'-azido-2'-deoxyadenosine that is coupled to deoxycytidine by phosphoramidite chemistry. The resulting dinucleotide is deprotected and ligated to a 22-nt RNA helix mimicking the acceptor arm of Ala-tRNA(Ala) by T4 RNA ligase. For alkyne UDP-MurNAc-pentapeptide, meso-cystine is enzymatically incorporated into the peptidoglycan precursor and reduced, and L-Cys is converted to dehydroalanine with O-(mesitylenesulfonyl)hydroxylamine. Reaction of but-3-yne-1-thiol with dehydroalanine affords the alkyne-containing UDP-MurNAc-pentapeptide. The Cu(I)-catalyzed azide alkyne cycloaddition reaction in the presence of tris[(1-hydroxypropyl-1H-1,2,3-triazol-4-yl)methyl]amine provided the peptidyl-RNA conjugate, which was tested as an inhibitor of non-ribosomal FemX(Wv) aminoacyl transferase. The bi-substrate analogue was found to inhibit FemX(Wv) with an IC(50) of (89±9) pM, as both moieties of the peptidyl-RNA conjugate contribute to high-affinity binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.