Herein, we have fabricated rutile TiO2 nanorod-coupled α-Fe2O3 by a wet-chemical process. It is demonstrated that the visible activities for photoelectrochemical water oxidation and for degrading pollutant of α-Fe2O3 are greatly enhanced after coupling a proper amount of rutile nanorods. The enhanced activity is attributed to the prolonged lifetime and improved separation of photogenerated charges mainly by the transient surface photovoltage responses. Interestingly, the observed EPR signals (with g⊥ = 1.963 and g|| = 1.948) of Ti3+ in the fabricated TiO2-Fe2O3 nanocomposite at ultra low temperature (1.8 k) after visible laser excitation, along with the electrochemical impedance spectra and the normalized photocurrent action spectra, testify evidently that the spacial transfers of visible-excited high-energy electrons of α-Fe2O3 to TiO2 could happen. Moreover, it is confirmed that it is more favorable for the uncommon electron transfers of α-Fe2O3 to rutile than to anatase. This is responsible for the much obvious enhancement of visible activity of Fe2O3 after coupling with rutile TiO2, compared with anatase and phase-mixed P25 ones. This work would help us to deeply understand the uncommon photophysical processes, and also provide a feasible route to improve the photocatalytic performance of visible-response semiconductor photocatalyst for water splitting and pollutant degradation.
The surface modification with a proper amount of phosphate accelerates the dynamic decay of photogenerated electrons in the nanocrystalline anatase TiO(2) film in the presence of O(2), consequently prolonging greatly the lifetime of photogenerated holes so as to improve the charge separation of TiO(2) and then its photocatalytic activity for degrading gas-phase acetaldehyde and liquid-phase phenol mainly based on the transient absorption spectra and the measurements of electrochemical O(2) reduction and the produced hydroxyl radical amount. The acceleration effects are attributed to the increased amount of adsorbed O(2) by means of the curves of O(2) temperature-programmed desorption.
In this study, α-Fe2O3 nanoparticles
with high visible photocatalytic activity for degrading liquid-phase
phenol and gas-phase acetaldehyde have been controllably synthesized
by a simple one-pot water-organic two-phase separated hydrolysis-solvothermal
(HST) method. Further, the visible photocatalytic activity is enhanced
greatly after modification with a proper amount of phosphate. The
enhanced activity is attributed to the increased charge separation
by promoting photogenerated electrons captured by the adsorbed O2 by means of the atmosphere-controlled surface photovoltage
spectra, along with the photoelectrochemical I–V curves. On
the basis of the O2 temperature-programmed desorption measurements,
it is suggested for the first time that the promotion effect results
from the increase in the amount of O2 adsorbed on the surfaces
of Fe2O3 by the partial substitution of −Fe–OH
with −Fe–O–P–OH surface ends. Expectedly,
the positive strategy would be also applicable to other visible-response
nanosized oxides as efficient photocatalysts. This work will provide
us with a feasible route to synthesize oxide-based nanomaterials with
good photocatalytic performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.