Microstructure of rapidly solidified eutectic alloy foil Sn – 8.8 wt. % Zn was studied. The alloy foil consists of solid solutions of zinc and tin. Dark equiaxed dispersed precipitates of zinc solid solution are uniformly interspersed in the matrix of tin solid solution. The parameters of the microstructure were determined. The average chord of a random secant at the sections of precipitates of a solid solution of zinc is 0.33 mm, and the specific interface surface is 0.81 mm–1. The precipitations of the tin solid solution have a microcrystalline structure. Specific surface of high angle boundaries less than 1 mm–1. The texture of the precipitates of solid solutions of tin and zinc in the foil was studied, and the pole densities of the diffraction lines of these phases are presented. The tin solid solution has the texture (100), and the zinc solid solution has the (0001) texture, which is explained by the predominant growth of grains, in which the crystalline planes of (100) tin and (0001) zinc are most closely packed and perpendicular to the heat flux. Eutectic alloy Sn – 8.8 wt. % Zn is in an unstable state. Annealing the foil causes the dissolution of small and coarsening of large particles of zinc solid solution, as well as the decomposition of a supersaturated tin solid solution. These processes cause an enlargement of the microstructure: an increase in the average particle size (dZn) of a solid solution of zinc and its volume fraction (VZn), a decrease in the specific surface (S ) of interphase boundaries.
Представлены результаты исследования микроструктуры быстрозатвердевшей фольги эвтектического сплава Sn - 8,8 мас.% Zn поверхностей A и B, определены параметры микроструктуры. Проведено исследование текстуры выделений твёрдых растворов олова и цинка в фольге, представлены полюсные плотности дифракционных линий данных фаз. Изучено влияние сверхбыстрого охлаждения на распределение углов разориентации соседних и случайно выбранных зёрен для поверхностных слоёв фольги, контактирующих с подложкой () и атмосферой () соответственно. The results are presenred of a study of the microstructure of rapidly solidified foil of the eutectic alloy Sn - 8,8 wt.% Zn A and B surfaces, microstructure parameters are determined. The texture of the precipitates of tin and zinc solid solutions in the foil was studied, and the pole densities of the diffraction lines of these phases are presented. The effect is studied of ultrafast cooling on the distribution of misorientation angles of neighboring and randomly selected grains for surface foil layers in contact with surfaces A and B .
The author of the article investigates how microwave radiation affects the processes of active deformation and mechanical stress relaxation in stressed stainless steel specimen under the electric current and when vector E (of microwave radiation) moves in different directions along the axe of the specimen. When vector E of microwave radiation was oriented in a longitudinalis way and electric current was passed, the softening of metal increased from 22 to 30 %. Multi-criteria analysis of steel samples with electric current and samples with no electric current was made. Analysis findings showed that external energy deposition influenced greatly on deformation of steel crystals. The action of high-density electric current pulses and microwave radiation on a sample loaded above the yield strength increases the ductility of stainless steel, and its strength characteristics, the microstructure is modified. Phase composition of steel was also investigated. The studies showed that the content of martensitic and austenitic phases in steel changed significantly. Moreover, the results showed that there was an additional mechanism of electroplastic deformation in the crossed fields of microwave radiation and magnetic field of current.
Представлены результаты исследований структур быстрозатвердевших фольг сплавов системы Sn - Zn с низким содержанием легирующих элементов (до ~ 1,5 мас.%), сплавы околоэвтектических составов, а также сплавы, содержание легирующих элементов которых составляет 20-95 мас.%. В быстрозатвердевших сплавах, содержащих 1,5 мас.% Sn и 1,2 мас.% Zn, образуются пересыщенные твёрдые растворы, распадающиеся по механизму образования и роста зародышей новой фазы при комнатной температуре. Сплавы составами 4,4 - 15 мас.% Zn после высокоскоростного охлаждения являются переохлаждёнными и пересыщенными обоими компонентами, и испытывают спинодальный распад с последующим образованием пересыщенных твёрдых растворов на основе Sn и Zn, распадающиеся при комнатной температуре. Во всех остальных сплавах формируется двухфазная структура из твёрдых растворов на основе Sn и Zn. Выявлено, что по мере перемещения фронта кристаллизации от поверхности контактирующего слоя фольги с поверхностью кристаллизатора происходит укрупнение частиц Sn и уменьшение удельной поверхности межфазной границы. Установлено, что быстрозатвердевшие фольги имеют микрокристаллическую структуру зёрен, и при увеличении концентрации легирующих элементов наблюдается тенденция уменьшения размера зерна. The results of studies of the structures of rapidly solidified foils of alloys of the Sn - Zn system with a low content of alloying elements (up to ~1,5 wt.%), alloys of near-eutectic compositions, as well as alloys with an alloying element content of 20 - 95 wt.% are presented. In rapidly solidified alloys containing 1,5 wt. % Sn and 1,2 wt. % Zn, supersaturated solid solutions are formed, which decompose according to the mechanism of formation and growth of nuclei of a new phase at room temperature. Alloys (4,4 - 15 wt.% Zn) after rapidly solidification are supercooled and supersaturated with both components, and experience spinodal decomposition followed by the formation of supersaturated solid solutions based on Sn and Zn, which decompose at room temperature. In all other alloys, a two-phase structure is formed from solid solutions based on Sn and Zn. It was found that as the crystallization front moves from the surface of the contacting foil layer with the surface of the mold, the Sn particles coarsen and the specific surface of the interface decreases. It has been established that rapidly solidified foils have a microcrystalline grain structure, with an increase in the concentration of alloying elements, a tendency to a decrease in grain size is observed.
The results of the study of the parameters of the structure of the fast-solidificated foil of hypoeutectic, eutectic, and hypereutectic alloys of the Sn-Zn system containing 4.4, 8.8, and 15 wt % Zn are presented. The fast-solidificated foil consists of equiaxial zinc particles and a supersaturated solid solution of tin. The zinc particles are uniformly distributed in the foil, which is induced by the formation of a supercooled and supersaturated liquid solution and its subsequent spinodal decomposition. The tin-and zinc-enriched regions of the liquid solution transform to crystalline phase nuclei. The volume fraction of zinc particles, the mean chord of the random secants on the sections of the zinc particles, and the specific surface of the inter-phase boundary formed by zinc and tin increase with the increase in the concentration of zinc in the alloys under study. The foil of the Sn-Zn alloys has a microcrystalline structure, in which crystallographic texture of the grains is observed. The formation of the (100) texture of tin and (0001) texture of zinc is observed. The fastsolidificated foils of the alloys are in an unstable state, which leads to the decomposition of the supersaturated solid solution, dissolution of small particles, and growth of large particles. Annealing at 180C for 22 h induces an increase in the mean chord of the sections of the zinc particles and volume of the zinc particles and a decrease in the specific surface of the interphase boundary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.