In this article, a computational platform is presented, entitled "Dance-the-Music", that can be used in a dance educational context to explore and learn the basics of dance steps. By introducing a method based on spatiotemporal motion templates, the platform facilitates to train basic step models from sequentially repeated dance figures performed by a dance teacher. Movements are captured with an optical motion capture system. The teachers' models can be visualized from a first-person perspective to instruct students how to perform the specific dance steps in the correct manner. Moreover, recognition algorithms-based on a template matching method-can determine the quality of a student's performance in real time by means of multimodal monitoring techniques. The results of an evaluation study suggest that the Dance-the-Music is effective in helping dance students to master the basics of dance figures.
Embodied music cognition stresses the role of the human body as mediator for the encoding and decoding of musical expression. In this paper, we set up a low dimensional functional model that accounts for 70% of the variability in the expressive body movement responses to music. With the functional principal component analysis, we modeled individual body movements as a linear combination of a group average and a number of eigenfunctions. The group average and the eigenfunctions are common to all subjects and make up what we call the commonalities. An individual performance is then characterized by a set of scores (the individualities), one score per eigenfunction. The model is based on experimental data which finds high levels of coherence/consistency between participants when grouped according to musical education. This shows an ontogenetic effect. Participants without formal musical education focus on the torso for the expression of basic musical structure (tempo). Musically trained participants decode additional structural elements in the music and focus on body parts having more degrees of freedom (such as the hands). Our results confirm earlier studies that different body parts move differently along with the music.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.