SUMMARY Invading viral DNA can be recognized by the host cytosolic DNA sensor, cyclic GMP-AMP (cGAMP) synthase (cGAS), resulting in production of the second messenger cGAMP, which directs the adaptor protein STING to stimulate production of type I interferons (IFNs). Although several DNA viruses are sensed by cGAS, viral strategies targeting cGAS are virtually unknown. We report here that Kaposi’s sarcoma-associated herpesvirus (KSHV) ORF52, an abundant gammaherpesvirus-specific tegument protein, subverts cytosolic DNA sensing by directly inhibiting cGAS enzymatic activity through a mechanism involving both cGAS- and DNA-binding. Moreover, ORF52 homologues in other gammaherpesviruses also inhibit cGAS activity and similarly bind cGAS and DNA, suggesting conserved inhibitory mechanisms. Furthermore, KSHV infection evokes cGAS-dependent responses that can limit the infection, and an ORF52-null mutant exhibits increased cGAS signaling. Our findings reveal a mechanism through which gammaherpesviruses antagonize host cGAS DNA sensing.
SUMMARY Molecular and behavioral responses to opioids are thought to be primarily mediated by neurons, although there is accumulating evidence that other cell types play a prominent role in drug addiction. To investigate cell-type-specific opioid responses, we performed single-cell RNA sequencing (scRNA-seq) of the nucleus accumbens of mice following acute morphine treatment. Differential expression analysis uncovered unique morphine-dependent transcriptional responses by oligodendrocytes and astrocytes. We examined the expression of selected genes, including Cdkn1a and Sgk1, by FISH, confirming their induction by morphine in oligodendrocytes. Further analysis using RNA-seq of FACS-purified oligodendrocytes revealed a large cohort of morphine-regulated genes. The affected genes are enriched for roles in cellular pathways intimately linked to oligodendrocyte maturation and myelination, including the unfolded protein response. Altogether, our data illuminate the morphine-dependent transcriptional response by oligodendrocytes and offer mechanistic insights into myelination defects associated with opioid abuse.
Whereas microglia are recognized as fundamental players in central nervous system (CNS) development and function, much less is known about macrophages of the peripheral nervous system (PNS). Here, by comparing gene expression across neural and conventional tissueresident macrophages, we identified transcripts that were shared among neural resident macrophages as well as selectively enriched in PNS macrophages. Remarkably, PNS macrophages constitutively expressed genes previously identified to be upregulated by activated microglia during aging, neurodegeneration, or loss of Sall1. Several microglial activationassociated and PNS macrophage-enriched genes were also expressed in spinal cord microglia at steady state. We further show that PNS macrophages rely on IL-34 for maintenance and arise from both embryonic and hematopoietic precursors, while their expression of activation-associated genes did not differ by ontogeny. Collectively, these data uncover shared and unique features between neural resident macrophages and emphasize the role of nerve environment for shaping PNS macrophage identity.
We have previously shown that ORF45, an immediate-early and tegument protein of Kaposi's sarcoma-associated herpesvirus (KSHV), causes sustained activation of p90 ribosomal S6 kinases (RSKs) and extracellular regulated kinase (ERK) (E. Kuang, Q. Tang, G. G. Maul, and F. Zhu, J Virol 82:1838 -1850, 2008, http://dx.doi.org/10.1128/JVI.02119-07). We now have identified the critical region of ORF45 that is involved in RSK interaction and activation. Alanine scanning mutagenesis of this region revealed that a single F66A point mutation abolished binding of ORF45 to RSK or ERK and, consequently, its ability to activate the kinases. We introduced the F66A mutation into BAC16 (a bacterial artificial chromosome clone containing the entire infectious KSHV genome), producing BAC16-45F66A. In parallel, we also repaired the mutation and obtained a revertant, BAC16-45A66F. The reconstitution of these mutants in iSLK cells demonstrated that the ORF45-F66A mutant failed to cause sustained ERK and RSK activation during lytic reactivation, resulting in dramatic differences in the phosphoproteomic profile between the wildtype virus-infected cells and the mutant virus-infected cells. ORF45 mutation or deletion also was accompanied by a noticeable decreased in viral gene expression during lytic reactivation. Consequently, the ORF45-F66A mutant produced significantly fewer infectious progeny virions than the wild type or the revertant. These results suggest a critical role for ORF45-mediated RSK activation in KSHV lytic replication. IMPORTANCEKSHV is the causative agent of three human malignancies. KSHV pathogenesis is intimately linked to its ability to modulate the host cell microenvironment and to facilitate efficient production of progeny viral particles. We previously described the mechanism by which the KSHV lytic protein ORF45 activates the cellular kinases ERK and RSK. We now have mapped the critical region of ORF45 responsible for binding and activation of ERK/RSK to a single residue, F66. We mutated this amino acid of ORF45 (F66A) and introduced the mutation into a newly developed bacterial artificial chromosome containing the KSHV genome (BAC16). This system has provided us with a useful tool to characterize the functions of ORF45-activated RSK upon KSHV lytic reactivation. We show that viral gene expression and virion production are significantly reduced by F66A mutation, indicating a critical role for ORF45-activated RSK during KSHV lytic replication. K aposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma (KS), the most common malignancy in HIV-infected individuals (1, 2). Besides KS, KSHV is associated with two lymphoproliferative diseases, primary effusion lymphoma and multicentric Castleman's disease (3, 4). KSHV belongs to the Gammaherpesvirinae subfamily in the Herpesviridae family and is closely related to rhesus rhadinovirus (RRV), herpesvirus saimiri (HVS), and murine gammaherpesvirus 68 (MHV-68) in the Rhadinovirus genus (␥2). Its closest relative in humans is Epstein-...
The ORF45 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus-specific immediate-early tegument protein. Our previous studies have revealed its crucial roles in both early and late stages of KSHV infection. In this study, we surveyed the interactome of ORF45 using a panel of monoclonal antibodies. In addition to the previously identified extracellular regulated kinase (ERK) and p90 ribosomal S6 kinase (RSK) proteins, we found several other copurified proteins, including prominent ones of ϳ38 kDa and ϳ130 kDa. Mass spectrometry revealed that the 38-kDa protein is viral ORF33 and the 130-kDa protein is cellular USP7 (ubiquitin-specific protease 7). We mapped the ORF33-binding domain to the highly conserved carboxyl-terminal 19 amino acids (aa) of ORF45 and the USP7-binding domain to the reported consensus motif in the central region of ORF45. Using immunofluorescence staining, we observed colocalization of ORF45 with ORF33 or USP7 both under transfected conditions and in KSHV-infected cells. Moreover, we noticed ORF45-dependent relocalization of a portion of ORF33/USP7 from the nucleus to the cytoplasm. We found that ORF45 caused an increase in ORF33 protein accumulation that was abolished if either the ORF33-or USP7-binding domain in ORF45 was deleted. Furthermore, deletion of the conserved carboxyl terminus of ORF45 in the KSHV genome drastically reduced the level of ORF33 protein in KSHV-infected cells and abolished production of progeny virions. Collectively, our results not only reveal new components of the ORF45 interactome, but also demonstrate that the interactions among these proteins are crucial for KSHV lytic replication. IMPORTANCEKaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of several human cancers. KSHV ORF45 is a multifunctional protein that is required for KSHV lytic replication, but the exact mechanisms by which ORF45 performs its critical functions are unclear. Our previous studies revealed that all ORF45 protein in cells exists in high-molecular-weight complexes. We therefore sought to characterize the interactome of ORF45 to provide insights into its roles during lytic replication. Using a panel of monoclonal antibodies, we surveyed the ORF45 interactome in KSHV-infected cells. We identified two new binding partners of ORF45: the viral protein ORF33 and cellular ubiquitin-specific protease 7 (USP7). We further demonstrate that the interaction between ORF45 and ORF33 is crucial for the efficient production of KSHV viral particles, suggesting that the targeted interference with this interaction may represent a novel strategy to inhibit KSHV lytic replication. K aposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma, the most common malignancy in HIV/AIDS patients. It is also associated with two lymphoproliferative disorders: primary effusion lymphoma and multicentric Castleman's disease (1-3). Like other herpesviruses, KSHV exhibits two alternative life cycles, a quiescent latent stage and a productiv...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.