The predatory ecology of Varanus komodoensis (Komodo Dragon) has been a subject of long-standing interest and considerable conjecture. Here, we investigate the roles and potential interplay between cranial mechanics, toxic bacteria, and venom. Our analyses point to the presence of a sophisticated combined-arsenal killing apparatus. We find that the lightweight skull is relatively poorly adapted to generate high bite forces but better adapted to resist high pulling loads. We reject the popular notion regarding toxic bacteria utilization. Instead, we demonstrate that the effects of deep wounds inflicted are potentiated through venom with toxic activities including anticoagulation and shock induction. Anatomical comparisons of V. komodoensis with V. (Megalania) priscus fossils suggest that the closely related extinct giant was the largest venomous animal to have ever lived. evolution ͉ phylogeny ͉ squamate ͉ protein ͉ toxin P redation by Varanus komodoensis, the world's largest extant lizard, has been an area of great controversy (cf. ref. 1). Three-dimensional finite element (FE) modeling has suggested that the skull and bite force of V. komodoensis are weak (2). However, the relevance of bite force and cranial mechanics to interpretations of feeding behavior cannot be fully evaluated in the absence of comparative data. Moreover, this previous analysis did not account for gape angle, which can significantly influence results (3). Irrespective of evidence for or against a powerful bite, V. komodoensis is clearly capable of opening wounds that can lead to death through blood loss (4). Controversially, the proposition that utilization of pathogenic bacteria facilitates the prey capture (4, 5) has been widely accepted despite a conspicuous lack of supporting evidence for a role in predation. In contrast, recent evidence has revealed that venom is a basal characteristic of the Toxicofera reptile clade (6), which includes the varanid lizards (7), suggesting a potential role of venom in prey capture by V. komodoensis that has remained unexplored. This is consistent with prey animals reported as being unusually quiet after being bitten and rapidly going into shock (4) and the anecdotal reports of persistent bleeding in human victims after bites (including B.G.F.'s personal observations). Shock-inducing and prolonged bleeding pathophysiological effects are also characteristic of helodermatid lizard envenomations (cf. ref . 8), consistent with the similarity between helodermatid and varanid venoms (6).Here, we examine the feeding ecology of V. komodoensis in detail. We compare the skull architecture and dentition with the related extinct giant V. priscus (Megalania). In this 3D finite element modeling of reptilian cranial mechanics that applies a comparative approach, we also compare the bite force and skull stress performance with that of Crocodylus porosus (Australian Saltwater Crocodile), including the identification of optimal gape angle (an aspect not considered in previous nonreptilian comparative FE analyses). We als...
In earlier studies we identified in a human genomic library a gene (human relaxin gene HI) coding for a relaxin-related peptide. We now have evidence that the human genome possesses an additional relaxin-related gene (designated human relaxin gene H2) which appears to be selectively expressed in the ovary during pregnancy. Nucleotide sequence analysis revealed striking differences in the predicted structures of relaxin encoded by these two genes. Chemical synthesis of biologically active relaxin based on the sequence obtained from ovarian cDNA clones confirmed that the expressed gene (H2) encodes an authentic human relaxin. The expressed gene appears to be transcribed into two different sized mRNAs and preliminary evidence suggests that the mRNA transcripts possess different 3'-untranslated regions. There was no evidence for the expression of human relaxin gene HI in the ovary and so far it is unclear whether gene Hl is expressed in another tissue or whether it represents a pseudogene. From the sequence data presented here it will now be possible to construct oligonucleotide probes and raise antibodies against synthetic peptides which could then be used to identify sites of relaxin biosynthesis and specifically quantitate the expression from either the Hl or H2 relaxin genes.
Tumor hypoxia induces the up-regulation of Hif-1alpha which in turn induces the expression of genes including VEGF to recruit new blood vessel outgrowth, enabling tumor growth and metastasis. Interference with the Hif-1 pathway and neoangiogenesis is an attractive anti-tumor target. The hydroxylation of Hif-1alpha by PHD proteins during normoxia serves as a recognition motif for its proteasomal degradation. However, under hypoxic conditions, hydroxylation is inhibited and furthermore, PHD proteins are themselves poly-ubiquitylated and degraded by Siah ubiqiuitin ligases. Our data demonstrate for the first time that inhibition of the interaction between Siah and PHD proteins using a peptide derived from a Drosophila protein interferes with the PHD degradation. Furthermore, cells stably expressing the inhibitor display reduced up-regulation of Hif-1alpha protein levels and Hif-1 mediated gene expression under hypoxia. In a syngeneic mouse model of breast cancer, the inhibitor reduced tumor growth and neoangiogenesis and prolonged survival of the mice. In addition, levels of Hif-1alpha and its target Glut-1 are reduced in the inhibitor expressing tumors. These data demonstrate, in a proof-of-principle study, that Siah protein, the most upstream component of the hypoxia pathway yet identified, is a viable drug target for anti-tumor therapies.
A new sarcophagine cage amine ligand with a pendent carboxylate functional group has been synthesised; the ligand has been conjugated to tumour targeting peptides ([Tyr3]-octreotate and [Lys3]-bombesin) and the conjugates radiolabelled with copper-64.
The origin and evolution of venom proteins in helodermatid lizards were investigated by multidisciplinary techniques. Our analyses elucidated novel toxin types resultant from three unique domain-expression processes: 1) The first full-length sequences of lethal toxin isoforms (helofensins) revealed this toxin type to be constructed by an ancestral monodomain, monoproduct gene (beta-defensin) that underwent three tandem domain duplications to encode a tetradomain, monoproduct with a possible novel protein fold; 2) an ancestral monodomain gene (encoding a natriuretic peptide) was medially extended to become a pentadomain, pentaproduct through the additional encoding of four tandemly repeated proline-rich peptides (helokinestatins), with the five discrete peptides liberated from each other by posttranslational proteolysis; and 3) an ancestral multidomain, multiproduct gene belonging to the vasoactive intestinal peptide (VIP)/glucagon family being mutated to encode for a monodomain, monoproduct (exendins) followed by duplication and diversification into two variant classes (exendins 1 and 2 and exendins 3 and 4). Bioactivity characterization of exendin and helokinestatin elucidated variable cardioactivity between isoforms within each class. These results highlight the importance of utilizing evolutionary-based search strategies for biodiscovery and the virtually unexplored potential of lizard venoms in drug design and discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.