The ion emission of a Sn-based discharge produced extreme ultraviolet producing plasma is characterized with the combined use of different time-of-flight techniques. An electrostatic ion spectrometer is employed to measure the average charge distribution of the emitted Sn ions. A dedicated Faraday cup configuration is used to measure the total ion flux from the source for different discharge energies. High-energy Sn ions emitted by the plasma with energies up to 100 keV have been identified. The number of high-energy ions increases for higher electrical input energy into the plasma while the signal associated with the expanding plasma ions does not show such dependence. The ion energy distribution for a bulk of detected ions is calculated based on the Faraday cup measurements and compared with theoretical plasma expansion dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.