MicroRNAs (miRNAs) are short non-coding RNA species which are important post-transcriptional regulators of gene expression and play an important role in the pathogenesis of diabetic nephropathy. miRNAs are present in urine in a remarkably stable form packaged in extracellular vesicles, predominantly exosomes. In the present study, urinary exosomal miRNA profiling was conducted in urinary exosomes obtained from 8 healthy controls (C), 8 patients with type II diabetes (T2D) and 8 patients with type II diabetic nephropathy (DN) using Agilent´s miRNA microarrays. In total, the expression of 16 miRNA species was deregulated (>2-fold) in DN patients compared to healthy donors and T2D patients: the expression of 14 miRNAs (miR-320c, miR-6068, miR-1234-5p, miR-6133, miR-4270, miR-4739, miR-371b-5p, miR-638, miR-572, miR-1227-5p, miR-6126, miR-1915-5p, miR-4778-5p and miR-2861) was up-regulated whereas the expression of 2 miRNAs (miR-30d-5p and miR-30e-5p) was down-regulated. Most of the deregulated miRNAs are involved in progression of renal diseases. Deregulation of urinary exosomal miRNAs occurred in micro-albuminuric DN patients but not in normo-albuminuric DN patients. We used qRT-PCR based analysis of the most strongly up-regulated miRNAs in urinary exosomes from DN patients, miRNAs miR-320c and miR-6068. The correlation of miRNA expression and micro-albuminuria levels could be replicated in a confirmation cohort. In conclusion, urinary exosomal miRNA content is altered in type II diabetic patients with DN. Deregulated miR-320c, which might have an impact on the TGF-β-signaling pathway via targeting thrombospondin 1 (TSP-1) shows promise as a novel candidate marker for disease progression in type II DN that should be evaluated in future studies.
Background: To date all efforts to develop a malaria vaccine have failed, reflecting the still fragmentary knowledge about protective mechanisms against malaria. In order to evaluate if vaccination changes responses of the anti-malaria effectors spleen and liver to blood stage malaria, BALB/c mice succumbing to infection with Plasmodium chabaudi were compared to those surviving after vaccination.
Urinary Extracellular Vesicles (uEV) have emerged as a source for biomarkers of kidney damage, holding potential to replace the conventional invasive techniques including kidney biopsy. However, comprehensive studies characterizing uEV isolation methods with patient samples are rare. Here we compared performance of three established uEV isolation workflows for their subsequent use in transcriptomics analysis for biomarker discovery in diabetic kidney disease. We collected urine samples from individuals with type 1 diabetes with macroalbuminuria and healthy controls. We isolated uEV by Hydrostatic Filtration Dialysis (HFD), ultracentrifugation (UC), and a commercial kit‐ based isolation method (NG), each with different established urine clearing steps. Purified EVs were analysed by electron microscopy, nanoparticle tracking analysis, and Western blotting. Isolated RNAs were subjected to miRNA and RNA sequencing. HFD and UC samples showed close similarities based on mRNA sequencing data. NG samples had a lower number of reads and different mRNA content compared to HFD or UC. For miRNA sequencing data, satisfactory miRNA counts were obtained by all methods, but miRNA contents differed slightly. This suggests that the isolation workflows enrich specific subpopulations of miRNA‐rich uEV preparation components. Our data shows that HFD,UC and the kit‐based method are suitable methods to isolate uEV for miRNA‐seq. However, only HFD and UC were suitable for mRNA‐seq in our settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.