Wildland fires dramatically affect forest ecosystems, altering the loss of their biodiversity and their sustainability. In addition, they have a strong impact on the global carbon balance and, ultimately, on climate change. This review attempts to provide a comprehensive meta-analysis of studies on remotely sensed methods and data used for estimation of forest burnt area, burn severity, post-fire effects, and forest recovery patterns at the global level by using the PRISMA framework. In the study, we discuss the results of the analysis based on 329 selected papers on the main aspects of the study area published in 48 journals within the past two decades (2000–2020). In the first part of this review, we analyse characteristics of the papers, including journals, spatial extent, geographic distribution, types of remote sensing sensors, ecological zoning, tree species, spectral indices, and accuracy metrics used in the studies. The second part of this review discusses the main tendencies, challenges, and increasing added value of different remote sensing techniques in forest burnt area, burn severity, and post-fire recovery assessments. Finally, it identifies potential opportunities for future research with the use of the new generation of remote sensing systems, classification and cloud performing techniques, and emerging processes platforms for regional and large-scale applications in the field of study.
Objective. Insecure Direct Object Reference (IDOR) or Broken Object Level Authorization (BOLA) are one of the critical type of access control vulnerabilities for modern applications. As a result, an attacker can bypass authorization checks leading to information leakage, account takeover. Our main research goal was to help an application security architect to optimize security design and testing process by giving an algorithm and tool that allows to automatically analyze system API specifications and generate list of possible vulnerabilities and attack vector ready to be used as security non-functional requirements. Method. We conducted a multivocal review of research and conference papers, bug bounty program reports and other grey sources of literature to outline patterns of attacks against IDOR vulnerability. These attacks are collected in groups proceeding with further analysis common attributes between these groups and what features compose the group. Endpoint properties and attack techniques comprise a group of attacks. Mapping between group features and existing OpenAPI specifications is performed to implement a tool for automatic discovery of potentially vulnerable endpoints. Results and practical relevance. In this work, we provide systematization of IDOR/BOLA attack techniques based on literature review, real cases analysis and derive IDOR/BOLA attack groups. We proposed an approach to describe IDOR/BOLA attacks based on OpenAPI specifications properties. We develop an algorithm of potential IDOR/BOLA vulnerabilities detection based on OpenAPI specification processing. We implemented our novel algorithm using Python and evaluated it. The results show that algorithm is resilient and can be used in practice to detect potential IDOR/BOLA vulnerabilities.
This study assesses whether MODIS NDVI satellite data time series can be used to detect changes in forest phenology over the different forest types of the Mari El Republic of Russia. Due to the severe climatic conditions, coniferous and deciduous forests of this region are especially vulnerable to climate change, which can lead to stresses from droughts and increase the frequency of wild fires in the long term. Time series analysis was applied to 16-day composite MODIS (MOD13Q1) (250 m) satellite data records (2000-2020) for the investigated territory, based on understanding that the NDVI trend vectors would enable detection of phenological changes in forest cover. There was also the determination of land cover/land use change for the area and examination of meteorological data for the investigated period. For the study, we utilized four phenological metrics: start of season (SOS), end of season (EOS), length of season (LOS), and Maximum vegetation index (MVI). The NDVI MODIS data series were smoothed in the TimeSAT software using the Savitsky-Golay filter. The results of the study show that over the 20-years period variations in phenological metrics do not have a significant impact on the productivity and growth of forest ecosystems in the Mari El Republic.
The knowledge of the disturbance effect on the forest ecosystems is crucial for sustainable development on the global level. It is important to quantify, map and monitor forest cover resulting from natural and anthropogenic disturbances. This research presents spatio-temporal trend analyses of forest cover disturbance in the Middle Volga region of Russia, using a time series of Landsat images. We generated a series of image composites at different year intervals between 1985 and 2018 and utilized a hybrid strategy consisting of Tasseled Cap transformation, sampling ground truth data and post-classification analyses. For validation of the disturbance maps, we used a point-based accuracy assessment, using local forest inventory reports and ground truth sample plots data for 2016-2018. The produced Landsat 1985, 2001 и 2018 thematic maps for 7 classes of forest cover show that coniferous area decreased by 4%. At the same time, there is a decrease in small-leaved (19%), mixed (8%) and an increase in young stands (23%). A significant disturbed forest area 85,120 ha was observed between 2014-2018, where much of the loss occurs due to severe wildfires. More research is needed with the inclusion of the additional number of anthropogenic and natural factors to increase the accuracy of monitoring and detection of forest disturbance of the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.