Multidisciplinary research on novel organic luminescent dyes is propelled by potential applications in plastic electronics and biomedical sciences. The construction of sophisticated fluorescent dyes around a tetrahedral boron(III) center is a particular approach that has fueled the creativity of chemists. Success in this enterprise has been readily achieved with simple synthetic protocols, the products of which display unusual spectroscopic behavior. This account is a critical review of recent advances in the field of boron(III) complexes (excluding BODIPYs and acetylacetonate boron complexes) involving species displaying similar coordination features, and we outline their potential development in several disciplines.
Complexation of a large variety of Anils (aniline-imines) with boron(III) precursors provides stable Boranils, some of which have been structurally characterized. Analysis of their optical properties reveals that the fluorescence stems from an intraligand charge transfer (ILCT) state with the best quantum yields reaching 90%. Chemistry on the Boranils allows grafting of photoactive modules acting as energy antennae for borondipyrromethene (Bodipy) and subphtalocyanine (SubPc) fluorophores.
Thin layers of oligomers with thickness between 7 and 9 nm were deposited on flat gold electrode surfaces by electrochemical reduction of diazonium reagents, then a Ti(2 nm)/Au top contact was applied to complete a solid-state molecular junction. The molecular layers investigated included donor molecules with relatively high energy HOMO, molecules with high HOMO-LUMO gaps and acceptor molecules with low energy LUMO and terminal alkyl chain. Using an oligo(bisthienylbenzene) based layer, a molecule whose HOMO energy level in a vacuum is close to the Fermi level of the gold bottom electrode, the devices exhibit robust and highly reproducible rectification ratios above 1000 at low voltage (2.7 V). Higher current is observed when the bottom gold electrode is biased positively. When the molecular layer is based on a molecule with a high HOMO-LUMO gap, i.e., tetrafluorobenzene, no rectification is observed, while the direction of rectification is reversed if the molecular layer consists of naphtalene diimides having low LUMO energy level. Rectification persisted at low temperature (7 K), and was activationless between 7 and 100 K. The results show that rectification is induced by the asymmetric contact but is also directly affected by orbital energies of the molecular layer. A "molecular signature" on transport through layers with thicknesses above those used when direct tunneling dominates is thus clearly observed, and the rectification mechanism is discussed in terms of Fermi level pinning and electronic coupling between molecules and contacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.