We propose a novel dynamic gate algorithm (DGA) for precise and accurate peak detection. The algorithm uses a threshold-determined detection window and center of gravity algorithm with bias compensation. We analyze the wavelength fit resolution of the DGA for different values of the signal-to-noise ratio and different peak shapes. Our simulations and experiments demonstrate that the DGA method is fast and robust with better stability and accuracy than conventional algorithms. This makes it very attractive for future implementation in sensing systems, especially based on multimode fiber Bragg gratings.
We evaluate whether 850 nm fiber Bragg grating (FBG) sensor systems can use low-cost 1550 nm telecom fibers; in other words, how detrimental the influence of higher-order modes is to the polarization stability and linearity of the strain and temperature response. We do this by comparing polarization sensitivity of a few-mode 850 nm FBG sensor to a strictly single-mode 850 nm FBG sensor system using 850 nm single-mode fibers. We also compare the performance of the FBGs in strain and temperature tests. Our results show that the polarization stability and the linearity of the response degrade due to the presence of the higher-order modes. We demonstrate that, by using simple coiling of the 1550 nm fiber, one can regain the performance of the few-mode system and make it usable for high precision measurements.
We propose a novel type of compact high-resolution multichannel micro-electro-mechanical systems (MEMS)-based interrogator, where we replace the linear detector with a digital micromirror device (DMD). The DMD is typically cheaper and has better pixel sampling than an InGaAs detector used in the 1550 nm range, which leads to cost reduction and better performance. Moreover, the DMD is a 2D array, which means that multichannel systems can be implemented without any additional optical components in the interrogator. This makes the proposed interrogator highly cost-effective, particularly for multichannel systems. The digital nature of the DMD also provides opportunities for advanced programmable Hadamard spectroscopy, which, without significant penalties, can greatly improve the wavelength fit resolution. Our results show that DMDs can be used in high-resolution spectroscopy and for Fiber Bragg grating (FBG) interrogation.
We propose a novel type of compact multichannel MEMS based spectrometer, where we replace the linear detector with a Digital Micromirror Device (DMD). The DMD is typically cheaper and has better pixel sampling than an InGaAs detector used in the 1550 nm range, which leads to cost reduction and better performance. Moreover, the DMD is a 2D array, which means that multichannel systems can be implemented without any additional optical components in the spectrometer. This makes the proposed interrogator highly cost-effective. The digital nature of the DMD also provides opportunities for advanced programmable spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.