Salicylic acid (SA) has an essential role in the responses of plants to pathogens. SA initiates defense signaling cascades by binding to proteins. NPR1 is a transcriptional coactivator and is a key target of SA binding. Many other proteins have been shown to bind SA. Among these proteins are important enzymes of primary metabolism. Here, we describe that the A1 isomer of chloroplast glyceraldehyde 3-phosphate dehydrogenase (GAPA1) from Arabidopsis thaliana binds SA, as shown in surface plasmon resonance experiments. Additionally, we show that SA inhibits its GAPDH activity in vitro. To gain an insight into the underlying molecular interactions and binding mechanism, we combined in silico molecular docking experiments and molecular dynamics simulations on the free protein and protein–ligand complex. The molecular docking analysis led to the identification of two putative binding pockets for SA. A simulation in water of the complex between SA and the protein allowed us to determine that only one pocket, a surface cavity around Asn35, would efficiently bind SA in the presence of a solvent. The importance of this is further supported through experimental biochemical assays. Indeed, mutating GAPA1 Asn35 into Gly or Arg81 into Leu strongly diminished the ability of the enzyme to bind SA. The very same cavity is responsible for the binding of NADP+ to GAPA1. NADH inhibited, in a dose-response manner, the binding of SA to GAPA1, validating our data. The use of the methodology to study SA binding to other proteins will be discussed at the end of the talk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.