Experimental chest trauma or blunt thoracic trauma using a blast wave mechanism is well established in animal models. The aim of the present study was to establish a complementary, murine experimental chest trauma model precisely defined by physical data and calculations. For this purpose, a device was developed using a dropped weight and physical properties, including velocity, energy and impact, were calculated. The device allowed for the maximum depth of impression to be measured. The device was first tested using blocks of modelling clay and was then applied to mouse cadavers. X-ray and dissection were performed to check for bone fractures and organ injuries following blunt chest traumas of increasing impact. Lesions and hemorrhages were observed in mouse cadavers which sustained a force equivalent to the energy of ~1 J.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.