Recent studies of translational control suggest that translation termination may not be simply the end of synthesizing a protein but rather be involved in modulating both the translation efficiency and stability of a given transcript. Using recombinant eukaryotic release factor 3 (eRF3) and cellular extracts, we have shown for Saccharomyces cerevisiae that yeast eRF3 and Pab1p can interact. This interaction, mediated by the N؉M domain of eRF3 and amino acids 473 to 577 of Pab1p, was demonstrated to be direct by the two-hybrid approach. We confirmed that a genetic interaction exists between eRF3 and Pab1p and showed that Pab1p overexpression enhances the efficiency of termination in SUP35 ( In general, termination of protein synthesis occurs when the ribosome elongation machinery encounters an in-frame termination codon on the mRNA. In eukaryotes two release factors have been identified, eukaryotic release factor 1 (eRF1), which recognizes all three stop codons, and eRF3, a GTPase that binds to eRF1 and stimulates its release activity in vitro (35,109). The eRF1 protein has a structure mimicking that of a tRNA molecule. It recognizes the stop codon in the A site of the ribosome and catalyzes the hydrolysis of the peptidyltRNA bond (88).In Saccharomyces cerevisiae eRF1 and eRF3 termination factors are encoded by the essential genes SUP45 and SUP35, respectively (10,43,53,60,105). Mutations in either of these genes give the same pleiotropic phenotypes which were selected as omnipotent nonsense suppressors (for a review see reference 49). Moreover, overexpression of both eRF1 and eRF3 is required to enhance the efficiency of termination in yeast (90). In higher eukaryotes, overproduction of eRF1 alone is sufficient to compete with a suppressor tRNA (62). Either Xenopus laevis or human eRF1 alone was also shown previously to have an antisuppressor effect against a suppressor tRNA in the reticulocyte lysate translation system (28). In vitro the eRF1 of higher eukaryotes has a release activity and does not need any other factor (28, 35), and eRF3 by itself binds GTP, but GTPase activity requires the presence of both eRF1 and ribosomes (36). It has been shown previously that eRF1 and eRF3 interact, suggesting that they form a functional complex (70,90,99,109 . Yeast eRF3 consists of an N-terminal prionforming domain (PrD), a charged M (middle) domain of unknown function, and a C-terminal domain that provides the essential translation termination activity (96,97,105). Recently, the minimum length of PrD was defined as amino acids (aa) 1 to 97 (76). It was shown previously that Hsp104 protein is required for formation and maintenance of [PSI ϩ ] aggregates of eRF3: its overproduction or inactivation cures cells of [PSI ϩ ] (14). The eRF3 family includes proteins from yeasts, humans, X. laevis, and other species that are strongly conserved in the C-terminal region, which has a significant homology with the translation elongation factor eEF1A (47,60,109). In contrast to the C-terminal part, the N-terminal region of eRF3 is ...
SignificanceChromosomes of most organisms have regions of high GC content interspersed with regions of low GC content. We constructed three variants of the yeast URA3 gene with GC contents of 31%, 43%, and 63%. We found that the high-GC URA3 gene had a substantially elevated rate of mutations, both single-base substitutions and deletions. The elevated base substitutions require an error-prone DNA polymerase, and the high rate of deletions occurs as a consequence of DNA polymerase slippage. The high-GC gene also had substantially elevated rates of mitotic and meiotic recombination. These observations indicate that GC content is an important parameter influencing genome evolution.
Summary Cross-beta fibrous protein aggregates (amyloids and amyloid-based prions) are found in mammals (including humans) and fungi (including yeast), and are associated with both diseases and heritable traits. The Hsp104/70/40 chaperone machinery controls propagation of yeast prions. The Hsp70 chaperones Ssa and Ssb show opposite effects on [PSI+], a prion form of the translation termination factor Sup35 (eRF3). Ssb is bound to translating ribosomes via ribosome-associated complex (RAC), composed of Hsp40-Zuo1 and Hsp70-Ssz1. Here we demonstrate that RAC disruption increases de novo prion formation in a manner similar to Ssb depletion, but interferes with prion propagation in a manner similar to Ssb overproduction. Release of Ssb into the cytosol in RAC-deficient cells antagonizes binding of Ssa to amyloids. Thus, propagation of an amyloid formed due to lack of ribosome-associated Ssb can be counteracted by cytosolic Ssb, generating a feedback regulatory circuit. Release of Ssb from ribosomes is also observed in wild type cells during growth in poor synthetic medium. Ssb is, in a significant part, responsible for the prion destabilization in these conditions, underlining the physiological relevance of the Ssb-based regulatory circuit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.