Multidimensional excitation allows imaging of curved slices with constant thickness. It also has the potential for further modification of the slice shape for increased ability to adapt to the anatomy.
In this work, the opportunities and challenges for the use of parallel transmission in combination with 2D RF pulses designed on EPI‐based excitation trajectories for diffusion‐weighted imaging (DWI) with reduced FOV are presented and analyzed in detail. The use of localized excitation allows for shortening of the EPI read‐out, which is especially important for EPI applications outside of the brain. DWI is chosen as a practically important and relevant example demonstrating the key aspects of 2D spatial selection. The properties of accelerated pulses are explored experimentally in phantoms for two different schemes, in which the thickness of the excited limited slices is encoded either along the frequency or phase encoding directions of the excitation trajectory. The feasibility of application of parallel transmission for MR imaging in humans is analyzed based on several pilot experiments. Although the parallel transmission acceleration is demonstrated to work in some examples in the spinal cord and abdomen, the results also uncover a number of challenges. Nonetheless, the reduction of FOV in the phase encoding direction of the read‐out train along with the associated substantial shortening of the minimum echo train length and reduction of geometric distortions motivates further search for an advantageous use of the parallel transmit technology in EPI applications. © 2015 Wiley Periodicals, Inc. Concepts Magn Reson Part B (Magn Reson Engineering) 45B: 153–173, 2015
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.