The mesostructure of ordered arrays of anisotropic nanoparticles is controlled by a combination of packing constraints and interparticle interactions, two factors that are strongly dependent on the particle morphology. We have investigated how the degree of truncation of iron oxide nanocubes controls the mesostructure and particle orientation in drop cast mesocrystal arrays. The combination of grazing incidence small-angle X-ray scattering and scanning electron microscopy shows that mesocrystals of highly truncated cubic nanoparticles assemble in an fcc-type mesostructure, similar to arrays formed by iron oxide nanospheres, but with a significantly reduced packing density and displaying two different growth orientations. Strong satellite reflections in the GISAXS pattern indicate a commensurate mesoscopic superstructure that is related to stacking faults in mesocrystals of the anisotropic nanocubes. Our results show how subtle variation in shape anisotropy can induce oriented arrangements of nanoparticles of different structures and also create mesoscopic superstructures of larger periodicity.
MARIA is a world class vertical sample reflectometer dedicated to the investigation of thin films in the fields of magnetism, soft matter and biology. With the elliptical vertically focusing guide and a wavelength resolution of Δλ/λ = 10%, the non-polarized flux at the sample position amounts to 1.2 × 108 n (s cm2)−1. Besides the polarized and non-polarized reflectivity mode for specular and off-specular reflectivity measurements, MARIA can also be used to carry out grazing-incidence small-angle neutron scattering investigations.
Azo-modified photosensitive polymers offer the interesting possibility to reshape bulk polymers and thin films by UV-irradiation while being in the solid glassy state. The polymer undergoes considerable mass transport under irradiation with a light interference pattern resulting in the formation of surface relief grating (SRG). The forces inscribing this SRG pattern into a thin film are hard to assess experimentally directly. In the current study, we are proposing a method to probe opto-mechanical stresses within polymer films by characterizing the mechanical response of thin metal films (10 nm) deposited on the photosensitive polymer. During irradiation, the metal film not only deforms along with the SRG formation but ruptures in a regular and complex manner. The morphology of the cracks differs strongly depending on the electrical field distribution in the interference pattern, even when the magnitude and the kinetics of the strain are kept constant. This implies a complex local distribution of the opto-mechanical stress along the topography grating. In addition, the neutron reflectivity measurements of the metal/polymer interface indicate the penetration of a metal layer within the polymer, resulting in a formation of a bonding layer that confirms the transduction of light-induced stresses in the polymer layer to a metal film.
A formalism is presented which allows the quantitative evaluation of data from grazing-incidence small-angle neutron and X-ray scattering -GISANS and GISAXS -in the framework of the distorted wave Born approximation. While several aspects have been reported previously, this formalism combines solutions for scattering intensities in both reflection and transmission hemispheres, taking into account instrumental resolution effects. This formalism is applied to the case of GISANS from self-organized diblock copolymers, ordered in perpendicular lamellar structures on an Si wafer in randomly oriented shortrange-ordered regions. The periodicity of D = 85 (9) nm found for deuterated polystyrene-polybutadiene of molecular weight M w = 165 kg mol À1 and a molecular weight fraction of the deuterated polystyrene block of 52% is consistent with atomic force microscopy and specular neutron reflectivity results. research papers J. Appl. Cryst. (2012). 45, 245-254 Denis Korolkov et al. Analysis of randomly oriented structures by GISANS 249
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.