Abstract. Issues of improving the efficiency of combined cycle gas turbines (CCGT) recovery type have been presented. Efficiency gas turbine plant reaches values of 45 % due to rise in temperature to a gas turbine to 1700 °C. Modern technologies for improving the cooling gas turbine components and reducing the excess air ratio leads to a further increase of the efficiency by 1-2 %. Based on research conducted at the Tomsk Polytechnic University, it shows that the CCGT efficiency can be increased by 2-3 % in the winter time due to the use of organic Rankine cycle, low-boiling substances, and air-cooled condensers (ACC). It is necessary to apply the waste heat recovery with condensation of water vapor from the flue gas, it will enhance the efficiency of the CCGT by 2-3 % to increase the efficiency of the heat recovery steam boiler (HRSB) to 10-12 %. Replacing electric pumps gas turbine engine (GTE) helps to reduce electricity consumption for auxiliary needs CCGT by 0.5-1.5 %. At the same time the heat of flue gas turbine engine may be useful used in HRSB, thus will increase the capacity and efficiency of the steam turbine.
Abstract. Is shown the influence of the heat transfer coefficient from the wet flue gas to the heat exchange surface on the overall heat transfer coefficient in the gas-air heat exchanger with the water vapor condensation. Experimental data are compared with calculations based on the mathematical model of the condensing heat exchanger.
Abstract. The object of the study are low-boiling substances, which can be used as working fluid in the Organic Rankine cycle (ORC) combine cycle gas turbine (CCGT) trinary type. Purpose of research is search for substances with the best thermodynamic, thermophysical and ecological properties. The calculation algorithm represents a mathematical calculation of CCGT in which the lower cycle, operating on low-boiling fluid and utilizes low-potential heat, as an air-cooling device On the basis of available scientific and practical facts on the use of working fluids the organic Rankine cycle for analysis were selected ozone-safe refrigerant: butane, pentane, R236ea, R236fa, R123, R245ca, R245fа, R365mfc, RC318. For these substances were found and tabulated critical pressure and temperature, condensation pressure, density and dynamic viscosity at a given condensation temperature. Studies have shown that the highest thermal net efficiency is achieved when using natural Freon pentane and synthetic R365mfc. Net efficiency CCGT strongly depends on the condensation temperature of the substance. For example, when using pentane when the condensation temperature decreases on 10 С net efficiency increases about 0.71 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.