Mutations in factor H (CFH), factor I (IF), and membrane cofactor protein (MCP) genes have been described as risk factors for atypical hemolytic uremic syndrome (aHUS). This study analyzed the impact of complement mutations on the outcome of 46 children with aHUS. A total of 52% of patients had mutations in one or two of known susceptibility factors (22, 13, and 15% of patients with CFH, IF, or MCP mutations, respectively; 2% with CFHϩIF mutations). Age Ͻ3 mo at onset seems to be characteristic of CFH and IF mutation-associated aHUS. The most severe prognosis was in the CFH mutation group, 60% of whom reached ESRD or died within Ͻ1 yr. Only 30% of CFH mutations were localized in SCR20. MCP mutation-associated HUS has a relapsing course, but none of the children reached ESRD at 1 yr. Half of patients with IF mutation had a rapid evolution to ESRD, and half recovered. Plasmatherapy seemed to have a beneficial effect in one third of patients from all groups except for the MCP mutation group. Only eight (33%) of 24 kidney transplantations that were performed in 15 patients were successful. Graft failures were due to early graft thrombosis (50%) or HUS recurrence. In conclusion, outcome of HUS in patients with CFH mutation is catastrophic, and posttransplantation outcome is poor in all groups except for the MCP mutation group. New therapies are urgently needed, and further research should elucidate the unexplained HUS group.
Pathologic thrombosis is a major cause of mortality. Hemolytic-uremic syndrome (HUS) features episodes of small vessel thrombosis resulting in microangiopathic hemolytic anemia, thrombocytopenia and renal failure1. Atypical HUS (aHUS) can result from genetic or autoimmune factors2 that lead to pathologic complement cascade activation3. By exome sequencing we identify recessive mutations in DGKE (diacylglycerol kinase epsilon) that co-segregate with aHUS in 9 unrelated kindreds, defining a distinctive Mendelian disease. Affected patients present with aHUS before age 1, have persistent hypertension, hematuria and proteinuria (sometimes nephrotic range), and develop chronic kidney disease with age. DGKE is found in endothelium, platelets, and podocytes. Arachidonic acid-containing diacylglycerols (DAG) activate protein kinase C, which promotes thrombosis. DGKE normally inactivates DAG signaling. We infer that loss of DGKE function results in a pro-thrombotic state. These findings identify a new mechanism of pathologic thrombosis and kidney failure and have immediate implications for treatment of aHUS patients.
The hepatocyte nuclear factor-1 encoded by the TCF2 gene plays a role for the specific regulation of gene expression in various tissues such as liver, kidney, intestine, and pancreatic islets and is involved in the embryonic development of these organs. TCF2 mutations are known to be responsible for the maturity-onset diabetes of the young type 5 associated with renal manifestations. Several observations have suggested that TCF2 mutations may be involved in restricted renal phenotypes. Eighty children (median age at diagnosis 0.2 yr) with renal cysts, hyperechogenicity, hypoplasia, or single kidneys were studied. Quantitative multiplex PCR amplification of short fluorescence fragments for the search of large genomic rearrangements and sequencing for the detection of point mutations were performed. TCF2 anomalies were detected in one third of patients (25 of 80). The main alteration was the complete deletion of the TCF2 gene detected in 16 patients. Family screening revealed de novo TCF2 anomalies in nine of 17 probands with a high prevalence of deletions (seven of nine). TCF2 anomalies were associated with bilateral renal anomalies (P < 0.001) and bilateral cortical cysts (P < 0.001). However, abnormal renal function, detected in 40% of patients, was independent of the TCF2 genotype. No difference in renal function or severity of renal morphologic lesions was observed between patients with a TCF2 deletion and those with point mutations. In conclusion, TCF2 molecular anomalies are involved in restricted renal phenotype in childhood without alteration of glucose metabolism. These findings have important implications in the diagnosis of patients with renal dysplasia with cysts and their follow-up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.