One-third of the stroke survivors remain with some disability, needing assistance to perform the activities of daily life and therapy to recover the lost functions. The robotic rehabilitation is a promissed field in this context improving the effectiveness of the treatment. Many researches have focused on developing human-robot interaction control to ensure user safety and therapy efficiency, but the validation of these controllers often requires contact between humans and robots, which involves cost, time and risk of accidents. This work aims to present a computational model of an ideal active orthosis used to assist the knee movement as a tool for test and validate human-robot interaction controls. Three controllers were applied to make the orthosis move the knee tracking the desired trajectory: a PID controller, an Inverse Dynamics-Based controller, and a Feedback-Feedforward Controller. The model proved to be useful and the controller with the best performance was the Feedback-Feedforward one.
To ensure the correct positioning of the end-effector of robot manipulators is one of the most important objectives of the robotic systems control. Lack of reliability in tracking the reference trajectory, as well as in the desired final positioning compromises the quality of the task to be performed, even causing accidents. The purpose of this work was to propose an optimal controller with an inner loop based on the dynamic model of the manipulator and a feedback loop based on the Linear Quadratic Regulator, in order to ensure that the end effector is in the right place, at the right time. The controller was compared to the conventional PID, presenting better performance, both in the transient response, eliminating overshoot, and steady-state, eliminating the stationary error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.