Somatic embryogenesis in cacao is difficult and this species is considered as recalcitrant. Therefore, reformulation of culture media might be a breakthrough to improve its somatic embryogenesis. In cacao, acquisition of somatic embryogenesis competence involves three main stages: induction of primary callus, induction of secondary callus and embryo development. Screening for MgSO 4 and K 2 SO 4 concentrations for somatic embryo differentiation was conducted on three genotypes (Sca6, IMC67 and C151-61) at the three stages. The effect of these two salts in culture media appears to be most efficient at the embryo development stage. At this stage, high MgSO 4 (24 mM) and K 2 SO 4 (71.568 mM) in the culture media induced direct somatic embryos on staminodes and petals of the Sca6 and IMC67 genotypes. Media supplemented with 6.0 mM and 12.0 mM MgSO 4 enabled high responsive of explants and produced high proportion of embryos. The positive effect of MgSO 4 and K 2 SO 4 on the acquisition of embryogenesis competence was further tested on seven cacao genotypes reputed as non embryogenic: SNK12, ICS40, POR, IMC67, PA121, SNK64 and SNK10. All these genotypes were able to produce somatic embryos depending on the MgSO 4 concentration. Thus, our results showed that the recalcitrance of cacao to somatic embryo differentiation can be overcome by screening for the suitable MgSO 4 or K 2 SO 4 concentration. Studies of the influence of different K + /Mg 2+ ratios (at normal sulphate concentration) on somatic embryo differentiation revealed that sulphate supply was the main factor promoting responsive explants and the proportion of embryos. Cysteine synthase isoforms showed patterns related to morphogenetic structures sustaining that sulphur supply and its assimilation improve somatic embryogenesis in cacao.
Yams (Dioscorea spp.) consist of approximately 600 species. Presently, these species are threatened by genetic erosion due to many factors such as pest attacks and farming practices. In parallel, complex taxonomic boundaries in this genus makes it more challenging to properly address the genetic diversity of yam and manage its germplasm. As a first step toward evaluating and preserving the genetic diversity yam species, we use a phylogenetic diversity (PD) approach that has the advantage to investigate phylogenetic relationships and test hypotheses of species monophyly while alleviating to the problem of ploidy variation within and among species. The Bayesian phylogenetic analysis of 62 accessions from 7 species from three regions of Cameroon showed that most Dioscorea sections were monophyletic, but species within sections were generally non-monophyletic. The wild species D. praehensilis and cultivated D. cayenensis were the species with the highest PD. At the opposite, D. esculenta has a low PD and future studies should focus on this species to properly address its conservation status. We also show that wild species show a stronger genetic structure than cultivated species, which potentially reflects the management of the yam germplasm by farmers. These findings show that phylogenetic diversity is a promising approach for an initial investigation of genetic diversity in a crop consisting of closely related species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.