Temperature, current density and magnetic field distributions in YBCO bulk superconductor during a pulsed-field magnetization (PFM) process are calculated using the finite difference method. Simulations are based on the heat diffusion equation with account of the heat produced by flux motion, and Maxwell's equations. A power law with temperature and magnetic field dependent parameters is used to characterize the electromagnetic behavior of the superconducting material. We analyze how the stored magnetic energy depends on the temperature and field dependences of the power law.
International audienceIt is well known that the critical current density Jc of a superconducting material depends on the magnetic field B. If magnetic independent Jc is chosen for analytical calculation of current distribution, the critical current Ic corresponds to full penetration current Ip. Ic is a measured current with 1 lV/cm criterion and Ip is a calculated current. The aim of this paper is to calculate the influence of the Jc(B) variation on Ip of a superconducting tube. To calculate Ip, which is depending on the material itself, a linear function Jc(B) is sufficient to obtain realistic values by analytic way. We need to have a linear Jc(B) law that is close to the measured Jc(B) characteristics presented in this paper. The linear Jc(B) law chosen was used for the calculation of the distribution of both magnetic field B(r, t) and the current density J(r, t). These distributions allow the analytical calculation of Ip. The calculated results of magnetic field distribution and full penetration current with Bean model and linear model are compared. We also present the variation of critical current with the characteristic parameters of the material. The present results, allow to understand the relationship between the full penetration current variation of a sample and the variation of the Jc(B) characteristics
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.