Alzheimer’s disease (AD) affects not only the central nervous system, but also peripheral blood cells including neutrophils and platelets, which actively participate in pathogenesis of AD through a vicious cycle between platelets aggregation and production of excessive amyloid beta (Aβ). Platelets adhesion on amyloid plaques also increases the risk of cerebral microcirculation disorders. Moreover, activated platelets release soluble adhesion molecules that cause migration, adhesion/activation of neutrophils and formation of neutrophil extracellular traps (NETs), which may damage blood brain barrier and destroy brain parenchyma. The present study examined the effects of intermittent hypoxic-hyperoxic training (IHHT) on elderly patients with mild cognitive impairment (MCI), a precursor of AD. Twenty-one participants (age 51–74 years) were divided into three groups: Healthy Control (n = 7), MCI+Sham (n = 6), and MCI+IHHT (n = 8). IHHT was carried out five times per week for three weeks (total 15 sessions). Each IHHT session consisted of four cycles of 5-min hypoxia (12% FIO2) and 3-min hyperoxia (33% FIO2). Cognitive parameters, Aβ and amyloid precursor protein (APP) expression, microRNA 29, and long non-coding RNA in isolated platelets as well as NETs in peripheral blood were investigated. We found an initial decline in cognitive function indices in both MCI+Sham and MCI+IHHT groups and significant correlations between cognitive test scores and the levels of circulating biomarkers of AD. Whereas sham training led to no change in these parameters, IHHT resulted in the improvement in cognitive test scores, along with significant increase in APP ratio and decrease in Aβ expression and NETs formation one day after the end of three-week IHHT. Such effects on Aβ expression and NETs formation remained more pronounced one month after IHHT. In conclusion, our results from this pilot study suggested a potential utility of IHHT as a new non-pharmacological therapy to improve cognitive function in pre-AD patients and slow down the development of AD.
Quercetin, a plant-derived flavonoid, has attracted considerable attention as promising compound for heart disease prevention and therapy. It has been linked to decreased mortality from heart disease and decreased incidence of stroke. Here, we report new data showing the angioprotective properties of quercetin mediated by its effect on proteasomal proteolysis. This study was designed to investigate the ability of quercetin to modulate proteasomal activity in a rabbit model of cholesterol-induced atherosclerosis. First, we show proteasomal trypsin-like (TL) activity increased up to 2.4-fold, chymotrypsin-like (CTL) activity increased by up to 43% and peptidyl-glutamyl peptide-hydrolyzing (PGPH) activity increased by up to 10% after 8 weeks of a cholesterol-rich diet. A single intravenous injection of the water-soluble form of quercetin (Corvitin) significantly decreased proteasomal TL activity 1.85-fold in monocytes, and decreased the CTL and PGPH activities more than 2-fold in polymorphonuclear leukocytes (PMNL) after 2 h. Prolonged administration (1 month) of Corvitin to animals following a cholesterol-rich diet significantly decreased all types of proteolytic proteasome activities both in tissues and in circulating leukocytes and was associated with the reduction of atherosclerotic lesion areas in the aorta. Additionally, the pharmacological form of quercetin (Quertin) was shown to have an antiatherogenic effect and an ability to inhibit proteasome activities.
Objective: Polymorphic mononuclear neutrophils (PMN) are very important cells participating in nonspecific defense of the organism. Among their well-known functions, the formation of neutrophil extracellular traps (NET) is interesting and potentially dangerous for the mechanisms of other cells. Ubiquitin-dependent proteasomal proteolysis is a very important regulator of all cellular activities, but the role of proteasomal proteolysis in NET formation has not been investigated. Methods: We performed experiments with PMN activated to form NET with phorbol 12-myristate 13-acetate (PMA) and the application of a proteasome inhibitor. We also added activated neutrophils to primary culture of isolated rat neonatal cardiomyocytes with or without anoxia-reoxygenation modeling. Results: The data obtained show that proteasomes participate in NET formation and proteasome inhibitors facilitate the blocking of the NET program. The percentage of NET after PMA application was 70.8 ± 7.2 and the proteasome inhibitor decreased this amount to 4.7 ± 0.9%. In coculture with cardiomyocytes during anoxia-reoxygenation, this effect prevented cardiac cell death induced by activated PMN. The stimulation of NET formation by PMA in coculture with isolated cardiomyocytes led to an increase in the number of necrotic cardiomyocytes of up to 33.1 ± 12.9% and a corresponding decrease in living cardiomyocytes to 66.9 ± 12.9%. The number of living cardiomyocytes in coculture after incubation with both PMA and proteasome inhibitor was 76.6 ± 13.3% (p < 0.05), and the number of necrotic cardiomyocytes was 23.4 ± 13.3% (p < 0.05). Conclusion: Proteasome inhibition blocks NET formation and prevents cardiomyocyte necrosis in coculture with activated neutrophils.
Proteasomal and autophagic pathways of protein degradation are two essential, endoplasmic reticulum (ER)-associated proteolytic systems involved in the ER stress response. The functional interaction between them has been shown by proteasome pharmacological inhibition. However, little data have been found concerning autophagy induction using an RNA interference approach due to the multisubunit composition of proteolytic systems. We suggested that silencing of single proteasome subunits can induce massive autophagy. Psmb7-specific small interference RNA added to isolated cardiomyocytes significantly affected mRNA expression of essential ER stress marker proteins, including DDIT3/CHOP and HSPA5/GRP78. mRNA expression of the key autophagy regulator MTOR was also increased. These findings were confirmed by single-cell reverse transcription real-time PCR on individual monodansylcadaverine (MDC)-labeled cardiomyocytes. RNA interference that decreased the levels of non-catalytic PSMB7 subunits of the proteasome had no influence on chymotrypsin- and trypsin-like activities, but significantly decreased peptidyl-glutamyl peptide-hydrolyzing activity. Immunohistochemical analysis showed increased levels of LC3-marked vacuoles in the cytoplasm of Psmb7-knockdown cells, and MDC staining showed significantly increased numbers of neonatal cardiomyocytes with autophagic vacuoles. After anoxia-reoxygenation, the number of cells with signs of autophagy after Psmb7 gene silencing was higher. Our results indicate that Psmb7 knockdown induces ER stress and autophagy in cardiomyocytes, which may be a useful approach to activate specific autophagy.
Intermittent hypoxia-hyperoxia training (IHHT) is a non-pharmacological therapeutic modality for management of some chronic- and age-related pathologies, such as Alzheimer’s disease (AD). Our previous studies demonstrated significant improvement of cognitive function after IHHT in the patients with mild cognitive impairment (MCI). The present study further investigated the effects of IHHT on pro-inflammatory factors in healthy elderly individuals and patients with early signs of AD. Twenty-nine subjects (13 healthy subjects without signs of cognitive impairment syndrome and 16 patients diagnosed with MCI; age 52 to 76 years) were divided into four groups: Healthy+Sham (n = 7), Healthy+IHHT (n = 6), MCI+Sham (n = 6), and MCI+IHHT (n = 10). IHHT was carried out 5 days per week for 3 weeks (total 15 sessions), and each daily session included 4 cycles of 5-min hypoxia (12% FIO2) and 3-min hyperoxia (33% FIO2). Decline in cognitive function indices was observed initially in both MCI+Sham and MCI+IHHT groups. The sham training did not alter any of the parameters, whereas IHHT resulted in improvement in latency of cognitive evoked potentials, along with elevation in APP110, GDF15 expression, and MMP9 activity in both healthy subjects and those with MCI. Increased MMP2 activity, HMGB1, and P-selectin expression and decreased NETs formation and Aβ expression were also observed in the MCI+IHHT group. There was a negative correlation between MoCA score and the plasma GDF15 expression (R = −0.5799, p < 0.05) before the initiation of IHHT. The enhanced expression of GDF15 was also associated with longer latency of the event-related potentials P330 and N200 (R = 0.6263, p < 0.05 and R = 0.5715, p < 0.05, respectively). In conclusion, IHHT upregulated circulating levels of some inflammatory markers, which may represent potential triggers for cellular adaptive reprogramming, leading to therapeutic effects against cognitive dysfunction and neuropathological changes during progression of AD. Further investigation is needed to clarify if there is a causative relationship between the improved cognitive function and the elevated inflammatory markers following IHHT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.