Wireless sensor networks enable dense sensing of the environment, offering unprecedented opportunities for observing the physical world. Centralized data collection and analysis adversely impact sensor node lifetime. Previous sensor network research has, therefore, focused on in network aggregation and query processing, but has done so for applications where the features of interest are known a priori. When features are not known a priori, as is the case with many scientific applications in dense sensor arrays, efficient support for multi-resolution storage and iterative, drill-down queries is essential. Our system demonstrates the use of in-network wavelet-based summarization and progressive aging of summaries in support of longterm querying in storage and communication-constrained networks. We evaluate the performance of our linux implementation and show that it achieves: (a) low communication overhead for multi-resolution summarization, (b) highly efficient drill-down search over such summaries, and (c) efficient use of network storage capacity through load-balancing and progressive aging of summaries.
Wireless sensor networks enable dense sensing of the environment, offering unprecedented opportunities for observing the physical world. Centralized data collection and analysis adversely impact sensor node lifetime. Previous sensor network research has, therefore, focused on in network aggregation and query processing, but has done so for applications where the features of interest are known a priori. When features are not known a priori, as is the case with many scientific applications in dense sensor arrays, efficient support for multi-resolution storage and iterative, drill-down queries is essential. Our system demonstrates the use of in-network wavelet-based summarization and progressive aging of summaries in support of longterm querying in storage and communication-constrained networks. We evaluate the performance of our linux implementation and show that it achieves: (a) low communication overhead for multi-resolution summarization, (b) highly efficient drill-down search over such summaries, and (c) efficient use of network storage capacity through load-balancing and progressive aging of summaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.