Two NADPH-cytochrome P450 reductase-encoding cDNAs were isolated from an Arabidopsis cDNA library by metabolic interference in a Saccharomyces cerevisiae mutant disrupted for its endogenous cpr1 gene. ATR1 encodes a protein of 692 amino acids, while ATR2 encodes either a 712-residue protein (ATR2-1), or a 702-residue protein (ATR2-2) depending on the choice of the initiation codon. Comparative analysis of ATR1 and ATR2-1 indicates 64% amino acid sequence identity and the absence of conservation in the third base of conserved amino acid codons. The two Arabidopsis reductases are encoded by distinct genes whose divergence is expected an early event in angiosperms evolution. A poly(Ser/Thr) stretch reminiscent of a plant chloroplastic targeting signal is present at the ATR2-1 N-terminal end but absent in ATR1. The cDNA open reading frames were expressed in yeast. The recombinant polypeptides were found present in the yeast endoplasmic reticulum membrane and exhibited a high specific NADPH-cytochrome c reductase activity. To gain more insight into the respective functions of the two reductases, the Arabidopsis cDNA encoding cinnamate 4-hydroxylase (CYP73A5) was cloned and co-expressed with ATR1 or ATR2 in yeast. Biochemical characterization of the Arabidopsis ATR1/CYP73A5 and ATR2-1/CYP73A5 systems demonstrates that the two distantly related Arabidopsis reductases similarly support the first oxidative step of the phenylpropanoid general pathway.
We report on the production of hydrocortisone, the major adrenal glucocorticoid of mammals and an important intermediate of steroidal drug synthesis, from a simple carbon source by recombinant Saccharomyces cerevisiae strains. An artificial and fully self-sufficient biosynthetic pathway involving 13 engineered genes was assembled and expressed in a single yeast strain. Endogenous sterol biosynthesis was rerouted to produce compatible sterols to serve as substrates for the heterologous part of the pathway. Biosynthesis involves eight mammalian proteins (mature forms of CYP11A1, adrenodoxin (ADX), and adrenodoxin reductase (ADR); mitochondrial forms of ADX and CYP11B1; 3beta-HSD, CYP17A1, and CYP21A1). Optimization involved modulating the two mitochondrial systems and disrupting of unwanted side reactions associated with ATF2, GCY1, and YPR1 gene products. Hydrocortisone was the major steroid produced. This work demonstrates the feasibility of transfering a complex biosynthetic pathway from higher eukaryotes into microorganisms.
Imidazoline binding sites (IBS) were proposed to be responsible for some of the pharmacological and therapeutic activities of imidazoline and related compounds and have been classified into two subtypes, I1BS and I2BS. Convergent studies attribute a role in central blood pressure regulation to the I1BS. In contrast, the function of I2BS remains unknown. In the present study, by combining biochemical and molecular biology approaches, we show that 1) microsequencing of I2BS purified from rabbit kidney mitochondria allowed the recovery of four peptide sequence stretches displaying up to 85.7% similarity with human, rat, and bovine monoamine oxidases (MAO)-A and -B; 2) I2BS and MAO displayed identical biophysical characteristics as their activities, measured by [3H]idazoxan binding and [14C]tyramine oxidation, respectively, could not be separated using various chromatographic procedures; and 3) heterologous expression of human placenta MAO-A and human liver MAO-B in yeast, inherently devoid of I2BS and MAO activities, led to the coexpression of [3H]idazoxan binding sites displaying ligand-recognition properties typical of I2BS. These results show definitely that I2BS is located on both MAO-A and -B. The fact that I2BS ligands inhibited MAO activity independently of the interaction with the catalytic region suggests that I2BS might be a previously unknown MAO regulatory site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.