As an innovative tool, ionic liquids (ILs) are widely employed as an alternative, smart, reaction media (vs. traditional solvents) offering interesting technology solutions for dissolving, processing and recycling of metal-containing materials. The costly mining and refining of rare earths (RE), combined with increasing demand for high-tech and energy-related applications around the world, urgently requires effective approaches to improve the efficiency of rare earth separation and recovery. In this context, ionic liquids appear as an attractive technology solution. This review addresses the structural and coordination chemistry of ionic liquids comprising rare earth metals with the aim to add to understanding prospects of ionic liquids in the chemistry of rare earths.
We present the synthesis, structure, magnetic properties, as well as the Mössbauer and electron paramagnetic resonance studies of a ring-shaped [FeLn(Htea)(μ-N)(N)(piv)] (Ln = Y 1, Gd 2, Tb 3, Dy 4, Ho 5, Er, 6) coordination cluster. The Dy, Tb, and Ho analogues show blocking of the magnetization at low temperatures without applied fields. The anisotropy of the 3d ion and the exchange interaction between 3d and 4f ions in FeLn complexes are unambiguously determined by high-field/high-frequency electron paramagnetic resonance measurements at low temperature. Ferromagnetic exchange interaction J is found which decreases upon variation of the Ln ions to larger atomic numbers. This dependence is similar to the behavior shown in the effective barrier values of complexes 3-5. Further information about the anisotropy of the Ln ions was gathered with Fe Mössbauer spectroscopy, and the combination of these methods provides detailed information regarding the electronic structure of these complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.