Books published in this series will be of interest to the research community and graduate students, with a unique focus on issues of computability. The perspective of the series is multidisciplinary, recapturing the spirit of Turing by linking theoretical and real-world concerns from computer science, mathematics, biology, physics, and the philosophy of science.The series includes research monographs, advanced and graduate texts, and books that offer an original and informative view of computability and computational paradigms.
We investigate the complexity of various combinatorial theorems about linear and partial orders, from the points of view of computability theory and reverse mathematics. We focus in particular on the principles ADS (Ascending or Descending Sequence), which states that every infinite linear order has either an infinite descending sequence or an infinite ascending sequence, and CAC (Chain-AntiChain), which states that every infinite partial order has either an infinite chain or an infinite antichain. It is wellknown that Ramsey's Theorem for pairs () splits into a stable version () and a cohesive principle (COH). We show that the same is true of ADS and CAC, and that in their cases the stable versions are strictly weaker than the full ones (which is not known to be the case for and ). We also analyze the relationships between these principles and other systems and principles previously studied by reverse mathematics, such as WKL0, DNR, and BΣ2. We show, for instance, that WKL0 is incomparable with all of the systems we study. We also prove computability-theoretic and conservation results for them. Among these results are a strengthening of the fact, proved by Cholak, Jockusch, and Slaman, that COH is -conservative over the base system RCA0. We also prove that CAC does not imply DNR which, combined with a recent result of Hirschfeldt, Jockusch. Kjos-Hanssen, Lempp, and Slaman, shows that CAC does not imply (and so does not imply ). This answers a question of Cholak, Jockusch, and Slaman.Our proofs suggest that the essential distinction between ADS and CAC on the one hand and on the other is that the colorings needed for our analysis are in some way transitive. We formalize this intuition as the notions of transitive and semitransitive colorings and show that the existence of homogeneous sets for such colorings is equivalent to ADS and CAC, respectively. We finish with several open questions.
Abstract. We investigate the complexity of several classical model theoretic theorems about prime and atomic models and omitting types. Some are provable in RCA 0 , and others are equivalent to ACA 0 . One, that every atomic theory has an atomic model, is not provable in RCA 0 but is incomparable with WKL 0 , more than Π 1 1 conservative over RCA 0 and strictly weaker than all the combinatorial principles of Hirschfeldt and Shore (2007) that are not Π 1 1 conservative over RCA 0 . A priority argument with Shore blocking shows that it is also Π 1 1 -conservative over BΣ 2 . We also provide a theorem provable by a finite injury priority argument that is conservative over IΣ 1 but implies IΣ 2 over BΣ 2 , and a type omitting theorem that is equivalent to the principle that for every X there is a set that is hyperimmune relative to X. Finally, we give a version of the atomic model theorem that is equivalent to the principle that for every X there is a set that is not recursive in X, and is thus in a sense the weakest possible natural principle not true in the ω-model consisting of the recursive sets.
Let R be a notion of algorithmic randomness for individual subsets of N. A set B is a base for R randomness if there is a Z T B such that Z is R random relative to B. We show that the bases for 1-randomness are exactly the K-trivial sets, and discuss several consequences of this result. On the other hand, the bases for computable randomness include every Δ 0 2 set that is not diagonally noncomputable, but no set of PA-degree. As a consequence, an n-c.e. set is a base for computable randomness if and only if it is Turing incomplete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.