identi®ed as a novel orally active and highly selective cyclo-oxygenase-2 (COX-2) inhibitor. 2 In CHO cells stably transfected with human COX isozymes, DFU inhibited the arachidonic aciddependent production of prostaglandin E 2 (PGE 2 ) with at least a 1,000 fold selectivity for COX-2 (IC 50 =41+14 nM) over COX-1 (IC 50 450 mM). Indomethacin was a potent inhibitor of both COX-1 (IC 50 =18+3 nM) and COX-2 (IC 50 =26+6 nM) under the same assay conditions. The large increase in selectivity of DFU over indomethacin was also observed in COX-1 mediated production of thromboxane B 2 (TXB 2 ) by Ca 2+ ionophore-challenged human platelets (IC 50 450 mM and 4.1+1.7 nM, respectively). 3 DFU caused a time-dependent inhibition of puri®ed recombinant human COX-2 with a K i value of 140+68 mM for the initial reversible binding to enzyme and a k 2 value of 0.11+0.06 s 71 for the ®rst order rate constant for formation of a tightly bound enzyme-inhibitor complex. Comparable values of 62+26 mM and 0.06+0.01 s 71 , respectively, were obtained for indomethacin. The enzyme-inhibitor complex was found to have a 1 : 1 stoichiometry and to dissociate only very slowly (t 1/2 =1 ± 3 h) with recovery of intact inhibitor and active enzyme. The time-dependent inhibition by DFU was decreased by co-incubation with arachidonic acid under non-turnover conditions, consistent with reversible competitive inhibition at the COX active site. 4 Inhibition of puri®ed recombinant human COX-1 by DFU was very weak and observed only at low concentrations of substrate (IC 50 =63+5 mM at 0.1 mM arachidonic acid). In contrast to COX-2, inhibition was time-independent and rapidly reversible. These data are consistent with a reversible competitive inhibition of COX-1. 5 DFU inhibited lipopolysaccharide (LPS)-induced PGE 2 production (COX-2) in a human whole blood assay with a potency (IC 50 =0.28+0.04 mM) similar to indomethacin (IC 50 =0.68+0.17 mM). In contrast, DFU was at least 500 times less potent (IC 50 497 mM) than indomethacin at inhibiting coagulationinduced TXB 2 production (COX-1) (IC 50 =0.19+0.02 mM). 6 In a sensitive assay with U937 cell microsomes at a low arachidonic acid concentration (0.1 mM), DFU inhibited COX-1 with an IC 50 value of 13+2 mM as compared to 20+1 nM for indomethacin. CGP 28238, etodolac and SC-58125 were about 10 times more potent inhibitors of COX-1 than DFU. The order of potency of various inhibitors was diclofenac4indomethacin*naproxen4nimesulide* meloxicam*piroxicam4NS-398*SC-576664SC-581254CGP 28238*etodolac4L-745,3374DFU. 7 DFU inhibited dose-dependently both the carrageenan-induced rat paw oedema (ED 50 of 1.1 mg kg 71 vs 2.0 mg kg 71 for indomethacin) and hyperalgesia (ED 50 of 0.95 mg kg 71 vs 1.5 mg kg 71 for indomethacin). The compound was also e ective at reversing LPS-induced pyrexia in rats (ED 50 =0.76 mg kg 71 vs 1.1 mg kg 71 for indomethacin). 8 In a sensitive model in which 51 Cr faecal excretion was used to assess the integrity of the gastrointestinal tract in rats, no signi®cant e ect was detected after oral...
Background — Atherosclerosis has features of an inflammatory disease. Because cyclooxygenase (COX)-2 is expressed in atherosclerotic lesions and promotes inflammation, we tested the hypotheses that selective COX-2 inhibition would reduce early lesion formation in LDL receptor–deficient (LDLR −/− ) mice and that macrophage COX-2 expression contributes to atherogenesis in LDLR −/− mice. Methods and Results — Treatment of male LDLR −/− mice fed the Western diet with rofecoxib or indomethacin for 6 weeks resulted in significant reductions in atherosclerosis in the proximal aorta (25% and 37%) and in the aorta en face (58% and 57%), respectively. Rofecoxib treatment did not inhibit platelet thromboxane production, a COX-1–mediated process, but it significantly reduced the urinary prostacyclin metabolite 2,3-dinor-6-keto-PGF 1α . Fetal liver cell transplantation was used to generate LDLR −/− mice null for expression of the COX-2 gene by macrophages. After 8 weeks on the Western diet, COX-2 −/− →LDLR −/− mice developed significantly less (33% to 39%) atherosclerosis than control COX-2 +/+ →LDLR −/− mice. In both the inhibitor studies and the transplant studies, serum lipids did not differ significantly between groups. Conclusions — The present studies provide strong pharmacological and genetic evidence that COX-2 promotes early atherosclerotic lesion formation in LDLR −/− mice in vivo. These results support the potential of anti-inflammatory approaches to the prevention of atherosclerosis. (Circulation. 2002;105:1816-1823.)
We have cloned and expressed the inducible form of prostaglandin (PG) E synthase from rat and characterized its regulation of expression in several tissues after in vivo lipopoylsaccharide (LPS) challenge. The rat PGE synthase is 80% identical to the human enzyme at the amino acid level and catalyzes the conversion of PGH(2) to PGE(2) when overexpressed in Chinese hamster ovary K1 (CHO-K1) cells. PGE synthase activity was measured using [(3)H]PGH(2) as substrate and stannous chloride to terminate the reaction and convert all unreacted unstable PGH(2) to PGF(2alpha) before high pressure liquid chromatography analysis. We assessed the induction of PGE synthase in tissues from Harlan Sprague-Dawley rats after LPS-induced pyresis in vivo. Rat PGE synthase was up-regulated at the mRNA level in lung, colon, brain, heart, testis, spleen, and seminal vesicles. Cyclooxygenase (COX)-2 and interleukin 1beta were also up-regulated in these tissues, although to different extents than PGE synthase. PGE synthase and COX-2 were also up-regulated to the greatest extent in a rat model of adjuvant-induced arthritis. The RNA induction of PGE synthase in lung and the adjuvant-treated paw correlated with a 3.8- and 16-fold induction of protein seen in these tissues by immunoblot analysis. Because PGE synthase is a member of the membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG) family, of which leukotriene (LT) C(4) synthase and 5-lipoxygenase-activating protein are also members, we tested the effect of LTC(4) and the 5-lipoxygenase-activating protein inhibitor MK-886 on PGE synthase activity. LTC(4) and MK-886 were found to inhibit the activity with IC(50) values of 1.2 and 3.2 microm, respectively. The results demonstrate that PGE synthase is up-regulated in vivo after LPS or adjuvant administration and suggest that this is a key enzyme involved in the formation of PGE(2) in COX-2-mediated inflammatory and pyretic responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.