. The electrocatalytic hydrogenation (ECH) of phenanthrene, anthracene, and naphthalene has been investigated under constant current at Raney nickel electrodes in a mixed aqueous organic medium. The influence of various parameters on the efficiency of the process determined by the current efficiency (a measure of the competition between hydrogenation and hydrogen evolution, the only two electrochemical processes occumng), the extent of hydrogenation (yield of octahydro-derivatives), and the conversion rate was studied with phenanthrene. The best conditions were ethylene glycol or propylene glycol as cosolvent containing between 1.5 to 5% of water, a neutral or slightly acidic medium containing boric acid (0.1 M) as buffer (initial pH of 2.6, final pH of 6.0-6.2), sodium chloride or tetrabutylamonium chloride as supporting electrolyte, a temperature of 80°C, and a current density of 42 to 84 m~/ c r n~. The most active electrodes (consisting of Raney Ni particles dispersed in a nickel matrix and surrounded by a layer of porous nickel) were obtained by leaching the dispersed alloy particles at 75°C for 7 h in 30% aqueous sodium hydroxide. The electrohydrogenation stopped at derivatives with a single aromatic ring, namely the octahydrophenanthrenes, octahydroanthracenes, and tetralin. In a non-buffered medium, tetrahydrophenanthrene could be obtained with selectivities of 80% or better.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.