CE exerts beneficial metabolic effects through improving HFHS diet-induced features of the metabolic syndrome, which is associated with a proportional increase in Akkermansia spp.
Our results show that CC prevents visceral and liver fat deposition through BAT activation and increased energy expenditure, a mechanism that is dependent on the GM and linked to major changes in the BA pool size and composition.
The purpose of this study was to investigate whether in vivo nitric oxide synthase (NOS) inhibition influences insulin-mediated glucose disposal in rat peripheral tissues. The NOS inhibitor N G-nitro-l-arginine methyl ester (l-NAME) or saline was infused constantly during a hyperinsulinemic-euglycemic clamp in normal rats. Glucose utilization rates of insulin-sensitive tissues (individual muscles, heart, and adipose tissues) were simultaneously determined using tracer infusion of 2-deoxy-d-[3H]glucose (2-[3H]DG). NOS blockade with l-NAME resulted in significant ( P < 0.05) reduction in both whole body glucose disposal (−16%, P < 0.01) and plasma 2-[3H]DG disappearance rate (−30%, P < 0.05) during hyperinsulinemic-euglycemic clamp.l-NAME significantly decreased insulin-stimulated glucose uptake in heart (−62%, P = 0.01), soleus (−42%, P = 0.05), red (−53%, P < 0.001) and white (−62%, P < 0.001) gastrocnemius, tibialis (−57%, P < 0.01), and quadriceps (−33%, P < 0.05) muscles. The NOS inhibitor also decreased insulin action in brown interscapular (−47%, P < 0.01), retroperitoneal (−52%, P = 0.07), and gonadal (−66%, P = 0.06) adipose tissues. In contrast to in vivo NOS blockade,l-NAME failed to affect basal or insulin-stimulated 2-[3H]DG transport in isolated soleus or extensor digitorum longus muscles in vitro. These results support the hypothesis that the action of insulin to augment glucose uptake by skeletal muscles and other peripheral insulin-sensitive tissues in vivo is NO dependent.
This study was carried out to investigate the attachment capabilities of Listeria monocytogenes strain Scott A to stainless steel, glass, polypropylene, and rubber surfaces after short contact times at ambient (20°C) and cold storage temperatures (4°C) using scanning electron microscopy technique. Surface energy value of each surface was estimated by contact angle measurements. All surfaces displayed many possible harborages for L. monocytogenes attachment. Our results indicated that L. monocytogenes cells could attach to all surface types at both temperatures after contact times as short as 20 min or 1 h. Extracellular materials could be observed on the surfaces especially polypropylene and glass incubated at 4 and 20°C for 1 h respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.