The article presents an overview of the theoretical and experimental work related to unmanned aerial vehicles (UAVs) motion parameters estimation based on the integration of video measurements obtained by the on-board optoelectronic camera and data from the UAV’s own inertial navigation system (INS). The use of various approaches described in the literature which show good characteristics in computer simulations or in fairly simple conditions close to laboratory ones demonstrates the sufficient complexity of the problems associated with adaption of camera parameters to the changing conditions of a real flight. In our experiments, we used computer simulation methods applying them to the real images and processing methods of videos obtained during real flights. For example, it was noted that the use of images that are very different in scale and in the aspect angle from the observed images in flight makes it very difficult to use the methodology of singular points. At the same time, the matching of the observed and reference images using rectilinear segments, such as images of road sections and the walls of the buildings look quite promising. In addition, in our experiments we used the projective transformation matrix computation from frame to frame, which together with the filtering estimates for the coordinate and angular velocities provides additional possibilities for estimating the UAV position. Data on the UAV position determining based on the methods of video navigation obtained during real flights are presented. New approaches to video navigation obtained using the methods of conjugation rectilinear segments, characteristic curvilinear elements and segmentation of textured and colored regions are demonstrated. Also the application of the method of calculating projective transformations from frame-to-frame is shown which gives estimates of the displacements and rotations of the apparatus and thereby serves to the UAV position estimation by filtering. Thus, the aim of the work was to analyze various approaches to UAV navigation using video data as an additional source of information about the position and velocity of the vehicle.
This paper reviews the NTIRE 2022 challenge on night photography rendering. The challenge solicited solutions that processed RAW camera images captured in night scenes to produce a photo-finished output image encoded in the standard RGB (sRGB) space. Given the subjective nature of this task, the proposed solutions were evaluated based on the mean opinions of viewers asked to judge the visual appearance of the results. Michael Freeman, a world-renowned photographer, further ranked the solutions with the highest mean opinion scores. A total of 13 teams competed in the final phase of the challenge. The proposed methods provided by the participating teams represent state-of-the-art performance in nighttime photography. Results from the various teams can be found here: https://nightimaging.org/
This paper considers methods for simulating color underwater images based on real terrestrial images. Underwater image simulation is widely used for developing and testing methods for improving underwater images. A large group of existing methods uses the same deterministic image transformation model ignoring the presence of noise in images. The paper demonstrates that this significantly affects the overall quality of underwater images simulation. It is shown both theoretically and numerically that the accuracy of the signal-to-noise ratio of underwater images simulated using a deterministic transformation decreases with increasing distance to the object. To solve this problem, a new model of image transformation for simulating underwater images based on terrestrial images is proposed, which considers the presence of noise in the image and is compatible with all simulating methods from the group under consideration. The paper presents the results of the simulation based on the existing and proposed models, showing that at long distances, the new results are better consistent with real data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.