Air pollution forecasting can provide reliable information about the future pollution situation, which is useful for an efficient operation of air pollution control and helps to plan for prevention. Dynamics of air pollution are usually reflected by various factors, such as the temperature, humidity, wind direction, wind speed, snowfall, rainfall, and so on, which increase the difficulty in understanding the change of air pollutant concentration. In this paper, a short-term forecasting model based on deep learning is proposed for PM2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5 µm) concentration, and the convolutional-based bidirectional gated recurrent unit (CBGRU) method is presented, which combines 1D convnets (convolutional neural networks) and bidirectional GRU (gated recurrent unit) neural networks. The case is carried out by using the Beijing PM2.5 data set in UCI Machine Learning Repository. Comparing the prediction results with the traditional ones, it is proved that the error of the CBGRU model is lower and the prediction performance is better.INDEX TERMS Air pollution forecasting, deep learning, 1D convolutional neural networks, bidirectional gated recurrent unit.
Energy storage systems will play a key role in the power system of the twenty first century considering the large penetrations of variable renewable energy, growth in transport electrification and decentralisation of heating loads. Therefore reliable real time methods to optimise energy storage, demand response and generation are vital for power system operations. This paper presents a concise review of battery energy storage and an example of battery modelling for renewable energy applications and second details an adaptive approach to solve this load levelling problem with storage. A dynamic evolutionary model based on the first kind Volterra integral equation is used in both cases. A direct regularised numerical method is employed to find the least-cost dispatch of the battery in terms of integral equation solution. Validation on real data shows that the proposed evolutionary Volterra model effectively generalises conventional discrete integral model taking into account both state of health and the availability of generation/storage.
Abstract. Concept drift has potential in smart grid analysis because the socio-economic behaviour of consumers is not governed by the laws of physics. Likewise there are also applications in wind power forecasting. In this paper we present decision tree ensemble classification method based on the Random Forest algorithm for concept drift. The weighted majority voting ensemble aggregation rule is employed based on the ideas of Accuracy Weighted Ensemble (AWE) method. Base learner weight in our case is computed for each sample evaluation using base learners accuracy and intrinsic proximity measure of Random Forest. Our algorithm exploits both temporal weighting of samples and ensemble pruning as a forgetting strategy. We present results of empirical comparison of our method with оriginal random forest with incorporated "replace-thelooser" forgetting andother state-of-the-art concept-drfit classifiers like AWE2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.