In this paper, we present Watasense, an unsupervised system for word sense disambiguation. Given a sentence, the system chooses the most relevant sense of each input word with respect to the semantic similarity between the given sentence and the synset constituting the sense of the target word. Watasense has two modes of operation. The sparse mode uses the traditional vector space model to estimate the most similar word sense corresponding to its context. The dense mode, instead, uses synset embeddings to cope with the sparsity problem. We describe the architecture of the present system and also conduct its evaluation on three different lexical semantic resources for Russian. We found that the dense mode substantially outperforms the sparse one on all datasets according to the adjusted Rand index.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.