The mammalian cell cycle model is available in a dedicated XML format (GINML) on our website, along with our logical simulation software GINsim (http://gin.univ-mrs.fr/GINsim). Higher resolution state transitions graphs are also found on this web site (Model Repository page).
Because a large number of molecular mechanisms involved in gene regulation have been described during the last decades, it is now becoming possible to address questions about the global structure of gene regulatory networks, at least in the case of some of the best-characterized organisms.This paper presents a global characterization of the transcriptional regulation in Escherichia coli on the basis of the current data. The connectivity of the corresponding network was evaluated by analyzing the distribution of the number of genes regulated by a given regulatory protein, and the distribution of the number of regulatory genes regulating a given regulated gene. The mean connectivity found (between 2 and 3) shows a rather loosely interconnected structure. Special emphasis is given to circular sequences of interactions (''circuits'') because of their critical dynamical properties. Only one-element circuits were found, in which negative autoregulation is the dominant architecture. These global properties are discussed in light of several pertinent theoretical approaches, as well as in terms of physiological and evolutionary considerations.
In the field of biological regulation, models dictated by experimental work are usually complex networks comprising intertwined feedback loops. In this paper the biological roles of individual positive loops (multistationarity, differentiation) and negative loops (homeostasis, with or without oscillations, buffering of gene dosage effect) are discussed. The relationship between feedback loops and steady states is then clarified, and the problem: "How can one conveniently disentangle complex networks?" is then considered. Initiated long ago, logical descriptions have been generalized from various viewpoints; these developments are briefly discussed. The recent concept of the loop-characteristic state, defined as the logical state located at the level of the thresholds involved in the loop, together with its application, are then presented. Biological applications are also discussed.
Cytokines such as TNF and FASL can trigger death or survival depending on cell lines and cellular conditions. The mechanistic details of how a cell chooses among these cell fates are still unclear. The understanding of these processes is important since they are altered in many diseases, including cancer and AIDS. Using a discrete modelling formalism, we present a mathematical model of cell fate decision recapitulating and integrating the most consistent facts extracted from the literature. This model provides a generic high-level view of the interplays between NFκB pro-survival pathway, RIP1-dependent necrosis, and the apoptosis pathway in response to death receptor-mediated signals. Wild type simulations demonstrate robust segregation of cellular responses to receptor engagement. Model simulations recapitulate documented phenotypes of protein knockdowns and enable the prediction of the effects of novel knockdowns. In silico experiments simulate the outcomes following ligand removal at different stages, and suggest experimental approaches to further validate and specialise the model for particular cell types. We also propose a reduced conceptual model implementing the logic of the decision process. This analysis gives specific predictions regarding cross-talks between the three pathways, as well as the transient role of RIP1 protein in necrosis, and confirms the phenotypes of novel perturbations. Our wild type and mutant simulations provide novel insights to restore apoptosis in defective cells. The model analysis expands our understanding of how cell fate decision is made. Moreover, our current model can be used to assess contradictory or controversial data from the literature. Ultimately, it constitutes a valuable reasoning tool to delineate novel experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.