The Cross‐Track Infrared Sounder (CrIS) is a Fourier Transform Michelson interferometer instrument launched on board the Suomi National Polar‐Orbiting Partnership (Suomi NPP) satellite on 28 October 2011. CrIS provides measurements of Earth view interferograms in three infrared spectral bands at 30 cross‐track positions, each with a 3 × 3 array of field of views. The CrIS ground processing software transforms the measured interferograms into calibrated and geolocated spectra in the form of Sensor Data Records (SDRs) that cover spectral bands from 650 to 1095 cm−1, 1210 to 1750 cm−1, and 2155 to 2550 cm−1 with spectral resolutions of 0.625 cm−1, 1.25 cm−1, and 2.5 cm−1, respectively. During the time since launch a team of subject matter experts from government, academia, and industry has been engaged in postlaunch CrIS calibration and validation activities. The CrIS SDR product is defined by three validation stages: Beta, Provisional, and Validated. The product reached Beta and Provisional validation stages on 19 April 2012 and 31 January 2013, respectively. For Beta and Provisional SDR data, the estimated absolute spectral calibration uncertainty is less than 3 ppm in the long‐wave and midwave bands, and the estimated 3 sigma radiometric uncertainty for all Earth scenes is less than 0.3 K in the long‐wave band and less than 0.2 K in the midwave and short‐wave bands. The geolocation uncertainty for near nadir pixels is less than 0.4 km in the cross‐track and in‐track directions.
Abstract. Presented here is the validation of the CrIS (Cross-track Infrared Sounder) fast physical NH 3 retrieval (CFPR) column and profile measurements using groundbased Fourier transform infrared (FTIR) observations. We use the total columns and profiles from seven FTIR sites in the Network for the Detection of Atmospheric Composition Change (NDACC) to validate the satellite data products. The overall FTIR and CrIS total columns have a positive correlation of r = 0.77 (N = 218) with very little bias (a slope of 1.02). Binning the comparisons by total column amounts, for concentrations larger than 1.0 × 10 16 molecules cm −2 , i.e. ranging from moderate to polluted conditions, the relative difference is on average ∼ 0-5 % with a standard deviation of 25-50 %, which is comparable to the estimated retrieval uncertainties in both CrIS and the FTIR. For the smallest total column range (< 1.0x × 10 16 molecules cm −2 ) where there are a large number of observations at or near the CrIS noise level (detection limit) the absolute differences between CrIS and the FTIR total columns show a slight positive column bias. The CrIS and FTIR profile comparison differences are mostly within the range of the single-level retrieved profile values from estimated retrieval uncertainties, showing average differences in the range of ∼ 20 to 40 %. The CrIS retrievals typically show good vertical sensitivity down into the boundary layer which typically peaks at ∼ 850 hPa (∼ 1.5 km). At this level the median absolute difference is 0.87 (std = ±0.08) ppb, corresponding to a median relative difference of 39 % (std = ±2 %). Most of the absolute andPublished by Copernicus Publications on behalf of the European Geosciences Union. 2646 E. Dammers et al.: Validation of the CrIS fast physical NH 3 retrieval with ground-based FTIR relative profile comparison differences are in the range of the estimated retrieval uncertainties. At the surface, where CrIS typically has lower sensitivity, it tends to overestimate in low-concentration conditions and underestimate in higher atmospheric concentration conditions.
[1] As important as spectral and radiometric calibration, the geometric calibration is one of the requisites for the Suomi National Polar-Orbiting Partnership Cross-track Infrared Sounder (CrIS) Sensor Data Records (SDR). In this study, spatially collocated measurements from the Visible Infrared Imaging Radiometer Suite (VIIRS) band I5 are used to evaluate the geolocation performance of the CrIS SDR by taking advantage of high spatial resolution and accurate geolocation of VIIRS measurements. The basic idea is to find the best collocation position between VIIRS and CrIS measurements by shifting VIIRS images in the track and scan directions. The retrieved best collocation position is then used to evaluate the CrIS geolocation performance by assuming the VIIRS geolocation as a reference. Sensitivity tests show that the method can well detect geolocation errors of CrIS within 30°scan angle. When the method was applied to evaluate the geolocation performance of the CrIS SDR, geolocation errors that were caused by software coding errors were successfully identified. After this error was corrected and the engineering packets V35 were released, the geolocation accuracy is 0.347 ± 0.051 km (1σ) in the scan direction and 0.219 ± 0.073 km in the track direction at nadir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.