Assembling the global eukaryotic tree of life has long been a major effort of Biology. In recent years, pushed by the new availability of genome-scale data for microbial eukaryotes, it has become possible to revisit many evolutionary enigmas. However, some of the most ancient nodes, which are essential for inferring a stable tree, have remained highly controversial. Among other reasons, the lack of adequate genomic datasets for key taxa has prevented the robust reconstruction of early diversification events. In this context, the centrohelid heliozoans are particularly relevant for reconstructing the tree of eukaryotes because they represent one of the last substantial groups that was missing large and diverse genomic data. Here, we filled this gap by sequencing high-quality transcriptomes for four centrohelid lineages, each corresponding to a different family. Combining these new data with a broad eukaryotic sampling, we produced a gene-rich taxon-rich phylogenomic dataset that enabled us to refine the structure of the tree. Specifically, we show that (i) centrohelids relate to haptophytes, confirming Haptista; (ii) Haptista relates to SAR; (iii) Cryptista share strong affinity with Archaeplastida; and (iv) Haptista þ SAR is sister to Cryptista þ Archaeplastida. The implications of this topology are discussed in the broader context of plastid evolution.
Apicomplexans are a major lineage of parasites, including causative agents of malaria and toxoplasmosis. How such highly adapted parasites evolved from free-living ancestors is poorly understood, particularly because they contain nonphotosynthetic plastids with which they have a complex metabolic dependency. Here, we examine the origin of apicomplexan parasitism by resolving the evolutionary distribution of several key characteristics in their closest free-living relatives, photosynthetic chromerids and predatory colpodellids. Using environmental sequence data, we describe the diversity of these apicomplexan-related lineages and select five species that represent this diversity for transcriptome sequencing. Phylogenomic analysis recovered a monophyletic lineage of chromerids and colpodellids as the sister group to apicomplexans, and a complex distribution of retention versus loss for photosynthesis, plastid genomes, and plastid organelles. Reconstructing the evolution of all plastid and cytosolic metabolic pathways related to apicomplexan plastid function revealed an ancient dependency on plastid isoprenoid biosynthesis, predating the divergence of apicomplexan and dinoflagellates. Similarly, plastid genome retention is strongly linked to the retention of two genes in the plastid genome, sufB and clpC, altogether suggesting a relatively simple model for plastid retention and loss. Lastly, we examine the broader distribution of a suite of molecular characteristics previously linked to the origins of apicomplexan parasitism and find that virtually all are present in their free-living relatives. The emergence of parasitism may not be driven by acquisition of novel components, but rather by loss and modification of the existing, conserved traits.A picomplexans are globally important parasites of humans and animals that include Plasmodium (malaria), Toxoplasma (toxoplasmosis), and Cryptosporidium (cryptosporidiosis). Their success as parasites rests on several highly specialized structures and systems that enable them to gain entry to and divide within cells or tissues of their hosts. These structures include the multimembrane pellicle, a relict nonphotosynthetic plastid (absent in Cryptosporidium), and the apical complex, which is made up of cytoskeletal and secretory elements (e.g., the conoid and rhoptries, respectively). Many specific characteristics of apicomplexans make attractive drug targets, and others may have played a key role in the origin of parasitism. Indeed, the question of apicomplexan origins has been of interest in general but is challenged by a paucity of comparable information from free-living relatives. Several apicomplexan relatives are known, some photosynthetic and others predatory (1, 2), but we lack a comprehensive understanding of their biology because they have either been discovered only recently, or are difficult to establish and maintain in culture. In general, photosynthetic apicomplexan relatives are referred to as chromerids (including Chromera and Vitrella) (1, 3) whereas predators...
Our understanding of the origin of animals has been transformed by characterizing their most closely related, unicellular sisters: the choanoflagellates, filastereans, and ichthyosporeans. Together with animals, these lineages make up the Holozoa [1, 2]. Many traits previously considered "animal specific" were subsequently found in other holozoans [3, 4], showing that they evolved before animals, although exactly when is currently uncertain because several key relationships remain unresolved [2, 5]. Here we report the morphology and transcriptome sequencing from three novel unicellular holozoans: Pigoraptor vietnamica and Pigoraptor chileana, which are related to filastereans, and Syssomonas multiformis, which forms a new lineage with Corallochytrium in phylogenomic analyses. All three species are predatory flagellates that feed on large eukaryotic prey, and all three also appear to exhibit complex life histories with several distinct stages, including multicellular clusters. Examination of genes associated with multicellularity in animals showed that the new filastereans contain a cell-adhesion gene repertoire similar to those of other species in this group. Syssomonas multiformis possessed a smaller complement overall but does encode genes absent from the earlier-branching ichthyosporeans. Analysis of the T-box transcription factor domain showed expansion of T-box transcription factors based on combination with a non-T-box domain (a receiver domain), which has not been described outside of vertebrates. This domain and other domains we identified in all unicellular holozoans are part of the two-component signaling system that has been lost in animals, suggesting the continued use of this system in the closest relatives of animals and emphasizing the importance of studying loss of function as well as gain in major evolutionary transitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.