A multispectral anti-reflective coating of high radiation strength for laser applications in the IR spectrum for nonlinear ZnGeP2 crystals has been developed for the first time. The coating was constructed using YbF3/ZnS. The developed coating was obtained by a novel approach using ion-beam deposition of these materials on a ZnGeP2 substrate. It has a high LIDT of more than 2 J/cm2. Optimal layer deposition regimes were found for high film density and low absorption, and good adhesion of the coating to the substrate was achieved. At the same time, there was no dissociation of the double compound under high-energy ions.
The paper presents the results on the development of an optical coating for a single-crystal ZnGeP2 substrate based on a selenide-oxide pair of materials (ZnSe/Al2O3). The obtained coating ensures the operation of OPO in the mid-IR range up to 5 μm wavelengths. The possibility of ZnSe sputtering by the IBS method is shown. The obtained optical coating has a high laser-induced damage threshold (LIDT) value at a 2097 µm wavelength: J/cm2 in energy density and = 101 W/cm2 in power density at a 10 KHz pulse repetition frequency and a pulse duration of 35 ns. Thus, it is shown for the first time that the pair of materials ZnSe/Al2O3 can be used for the deposition of optical coatings by the IBS method with high LIDT values for ZnGeP2 optical elements operating in the mid-IR range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.