Steganography is collection of methods to hide secret information ("payload") within non-secret information ("container"). Its counterpart, Steganalysis, is the practice of determining if a message contains a hidden payload, and recovering it if possible. Presence of hidden payloads is typically detected by a binary classifier. In the present study, we propose a new model for generating image-like containers based on Deep Convolutional Generative Adversarial Networks (DCGAN). This approach allows to generate more setganalysis-secure message embedding using standard steganography algorithms. Experiment results demonstrate that the new model successfully deceives the steganography analyzer, and for this reason, can be used in steganographic applications. SteganographySteganography is the practice of concealing a secret message, e.g. a document, an image, or a video, within another non-secret message in the most inconspicuous manner possible. In this paper we consider a text-to-image embedding, with the text given by bit string. More formally, for a message T
The video generation task can be formulated as a prediction of future video frames given some past frames. Recent generative models for videos face the problem of high computational requirements. Some models require up to 512 Tensor Processing Units for parallel training. In this work, we address this problem via modeling the dynamics in a latent space. After the transformation of frames into the latent space, our model predicts latent representation for the next frames in an autoregressive manner. We demonstrate the performance of our approach on BAIR Robot Pushing and Kinetics-600 datasets. The approach tends to reduce requirements to 8 Graphical Processing Units for training the models while maintaining comparable generation quality.
We present a new method for vectorization of technical line drawings, such as floor plans, architectural drawings, and 2D CAD images. Our method includes (1) a deep learning-based cleaning stage to eliminate the background and imperfections in the image and fill in missing parts, (2) a transformer-based network to estimate vector primitives, and (3) optimization procedure to obtain the final primitive configurations. We train the networks on synthetic data, renderings of vector line drawings, and manually vectorized scans of line drawings. Our method quantitatively and qualitatively outperforms a number of existing techniques on a collection of representative technical drawings.
No abstract
In many branches of earth sciences, the problem of rock study on the micro-level arises. However, a significant number of representative samples is not always feasible. Thus the problem of the generation of samples with similar properties becomes actual. In this paper, we propose a novel deep learning architecture for three-dimensional porous media reconstruction from two-dimensional slices. We fit a distribution on all possible three-dimensional structures of a specific type based on the given dataset of samples. Then, given partial information (central slices) we recover the three-dimensional structure around such slices as the most probable one according to that constructed distribution. Technically, we implement this in the form of a deep neural network with encoder, generator and discriminator modules. Numerical experiments show that this method provides good reconstruction in terms of Minkowski functionals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.