High molecular weight homologues of gp91phox, the superoxide-generating subunit of phagocyte nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase, have been identified in human (h) and Caenorhabditis elegans (Ce), and are termed Duox for “dual oxidase” because they have both a peroxidase homology domain and a gp91phox domain. A topology model predicts that the enzyme will utilize cytosolic NADPH to generate reactive oxygen, but the function of the ecto peroxidase domain was unknown. Ce-Duox1 is expressed in hypodermal cells underlying the cuticle of larval animals. To investigate function, RNA interference (RNAi) was carried out in C. elegans. RNAi animals showed complex phenotypes similar to those described previously in mutations in collagen biosynthesis that are known to affect the cuticle, an extracellular matrix. Electron micrographs showed gross abnormalities in the cuticle of RNAi animals. In cuticle, collagen and other proteins are cross-linked via di- and trityrosine linkages, and these linkages were absent in RNAi animals. The expressed peroxidase domains of both Ce-Duox1 and h-Duox showed peroxidase activity and catalyzed cross-linking of free tyrosine ethyl ester. Thus, Ce-Duox catalyzes the cross-linking of tyrosine residues involved in the stabilization of cuticular extracellular matrix.
Microtubules (MTs), primarily composed of α and β tubulin polymers, must often work in concert with microtubule‐associated proteins (MAPs) in order to modulate their functional demands. In a mature brain neuron, one of the key MAPs that resides primarily in the axonal compartment is the tau protein. Tau, in the adult human brain, is a set of six protein isoforms, whose binding affinity to MTs can be modulated by phosphorylation. In addition to the role that phosphorylation of tau plays in the “normal” physiology of neurons, hyperphosphorylated tau is the primary component of the fibrillary pathology in Alzheimer's disease (AD). Although many protein kinases are known to phosphorylate tau in vitro, the in vivo players contributing to the hyperphosphorylation of tau remain elusive. The experiments in this study attempt to define which protein kinases and protein phosphatases reside in the associated network of microtubules, thereby being strategically positioned to influence the phosphorylation of tau. Microtubule fractions are utilized to determine which of the microtubule‐associated kinases most readily impacts the phosphorylation of tau at “AD‐like” sites. Results from this study indicate that PKA, CK1, GSK3β, and cdk5 associate with microtubules. Among the MT‐associated kinases, GSK3β and cdk5 most readily contribute to the ATP‐induced “AD‐like” phosphorylation of tau. J. Neurosci. Res. 62:463–472, 2000. © 2000 Wiley‐Liss, Inc.
To further understand the assembly and maintenance of the muscle contractile apparatus, we have identified a new protein, UNC-98, in the muscle of Caenorhabditis elegans. unc-98 mutants display reduced motility and a characteristic defect in muscle structure. We show that the major defect in the mutant muscle is in the M-lines and dense bodies (Z-line analogs). Both functionally and compositionally, nematode M-lines and dense bodies are analogous to focal adhesions of nonmuscle cells. UNC-98 is a novel 310-residue polypeptide consisting of four C2H2 Zn fingers and several possible nuclear localization signal and nuclear export signal sequences. By use of UNC-98 antibodies and green fluorescent protein fusions (to full-length UNC-98 and UNC-98 fragments), we have shown that UNC-98 resides at M-lines, muscle cell nuclei, and possibly at dense bodies. Furthermore, we demonstrated that 1) the N-terminal 106 amino acids are both necessary and sufficient for nuclear localization, and 2) the C-terminal (fourth) Zn finger is required for localization to M-lines and dense bodies. UNC-98 interacts with UNC-97, a C. elegans homolog of PINCH. We propose that UNC-98 is both a structural component of muscle focal adhesions and a nuclear protein that influences gene expression.
Lamins form structural filaments in the nucleus. Mutations in A-type lamins cause muscular dystrophy, cardiomyopathy and other diseases, including progeroid syndromes. To identify new binding partners for lamin A, we carried out a two-hybrid screen with a human skeletal-muscle cDNA library, using the Ig-fold domain of lamin A as bait. The C-terminal region of titin was recovered twice. Previous investigators showed that nuclear isoforms of titin are essential for chromosome condensation during mitosis. Our titin fragment, which includes two regions unique to titin (M-is6 and M-is7), bound directly to both A- and B-type lamins in vitro. Titin binding to disease-causing lamin A mutants R527P and R482Q was reduced 50%. Studies in living cells suggested lamin-titin interactions were physiologically relevant. In Caenorhabditis elegans embryos, two independent C. elegans (Ce)-titin antibodies colocalized with Ce-lamin at the nuclear envelope. In lamin-downregulated [lmn-1(RNAi)] embryos, Ce-titin was undetectable at the nuclear envelope suggesting its localization or stability requires Ce-lamin. In human cells (HeLa), antibodies against the titin-specific domain M-is6 gave both diffuse and punctate intranuclear staining by indirect immunofluorescence, and recognized at least three bands larger than 1 MDa in immunoblots of isolated HeLa nuclei. In HeLa cells that transiently overexpressed a lamin-binding fragment of titin, nuclei became grossly misshapen and herniated at sites lacking lamin B. We conclude that the C-terminus of nuclear titin binds lamins in vivo and might contribute to nuclear organization during interphase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.